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Abstract

A high degree of mobility and flexibility will be a prerequisifor the successful deployment of future service robots.
Currently, pseudo-omnidirectional, wheeled mobile rslwith independently steered and driven wheels seem togeovi

a solid compromise between complexity, flexibility and rsimess. Yet, such undercarriages are imposed to the risk of
actuator fighting and suffer from singular regions withirittconfiguration space.

Within this work a model predictive control (MPC) approachproposed that addresses both, actuator coordination
and singularity avoidance. The control problem is treatétliwthe spherical coordinate representation of the sy'ste
velocity space. The MPC approach is simulative and expertatly evaluated w.r.t. the undercarriage of the Care-O-
bot® 3 mobile robot Figure 1) and is compared to an earlier developed potential field (RBgd approach.

1 Introduction taking into account the singular regions during trajectory
planning and control, where they constrained the acces-
1.1 Motivation & Related Work sible velocity space of the robot to a region without sin-

gular configurations. A similar approach was proposed
Future service robot applications will impose high require by Robuffo-Giordano et al. in [9] for the mobile robot
ments on the employed mobility concepts [1]. While us-jystin. In [10] we sketched an approach that avoids singu-
age in and manipulation of man-made environments repy configurations by implementing a potential field (PF)
quire high flexibility, the aspect of commercialization put [11] based controller. Yet, potential field based approache
a limit to available computational performance and acceptyye known to be sensitive to local minima [12]. And even
able power consumption. Additionally, aspects as robustoygh — due to disturbances in practical implementations
ness on different, changing undergrounds (carpets oj tiles_ the system usually might not stay inside a local minimum
and modest uneven terrain (e.g. door sills) have to bgyr 5 Jong time [13], this behaviour can slow down the con-
considered. Lately, pseudo-omnidirectional, wheeled mogg|jer significantly. Moreover, due to the discrete time im
bile robots whose undercarriages are composed by indjementation of the control problem at hand the potential
pendently steerable and drivable wheels [2, 3, 4, 5] have|q approach may lead to local oscillations, when the sys-
emerged as an intermediate-term solution. Such systemsm state centrally approaches the influence region of the
present a viable compromise between complexity, robustepyisive potentials. These properties can be improved by
ness and flexibility. incorporating a predictive horizon into the control scheme
According to the work by Campion et al. [6], a robot with
steered standard wheels has 3 degrees-of-freedom (DoRyjthin this work a model predictive control (MPC) [14]
These DoF are split into the degree of steerabifity=  approach is proposed that addresses both, actuator coor-
2, associated to the number of independently steerabl@ination and singularity avoidance. Therefore, the con-
wheels, and the degree of mobilidy, = 1, associated 0 {ro| problem is treated within the spherical coordinate
the instantaneously accessible velocity space for the plagpresentation(p, ¢, 6) of the system’s velocity space
nar motion. Thus, pseudo-omnidirectional mobile VObOtS(vm,r,vy - wy) [15], wherep is associated to the degree
are able to realize arbitrary velocity and rotational com-uf mob‘ilyity of the systend,,. The and the? coordinates
mands, however only after reorienting their wheels. Furyre associated to the degree of steerability of the system
thermore, this means that such systems are often Ovey-  Actuator saturation is treated by incorporating the re-
actuated. Usually, they possess four actively steered arg};sive potential fields applied in [10] into the penaltyner
driven wheels and thus eight actuators to implement thyithin the optimization step of the MPC [16, 17]. The de-
three DoF. Therefore, it is important to precisely coordi-riyed algorithm is implemented on the undercarriagie (
nate all motions to reduce actuator fighting [7]. Moreover,gyre 1) of Care-O-bd®P 3's mobile base. It is evaluated

such pseudo-omnidirectional, wheeled mobile robots sufsimylative and experimentally and compared with the per-
fer from singular regions within their configuration spacefgrmance of a PE based controller.

[8, 9, 10]. Thuilot et al. solved this problem in [8] by
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Figure 1: Mobile Base of Care-O-b6t 3

1.2 Care-O-bof® 3 — Mobile Base

2 System Kinematics

2.1 State Representation

To decouple the control of the undercarriage from the
trajectory-control and to provide a simple interface for

commanding velocities, the state space of the undercar-
riage is reduced to the velocities in the robot coordinate
system

Within this context,. is the system’s twist-vector, while
@, are the directions and, the rotations (associated to
drive-motion) of all wheels. Within this work, we focus
on a kinematic description of the undercarriage and there-
fore omit the calculation of wheel-ground contact forces.
As proposed in [15], in the we following use the spherical
coordinate transform of the twist-vector to represent the

Current and velocity control for the actuators is providedsystem state

by off-the-shelf motor controllers. The lowest software-

layer comprises the control loop for the robot velocities \/v?. + 02+ (wy - dimaz)?
(v, vy, w) generating the set point valuég,, @,) for all o, e

motor controllers. It provides an interface for higherleve . = | ¢, | = arctany (ﬁ)
components, for instance, a user interface such as a joy- 0, wned

pad Figure 2(a)), the navigation moduleFigure 2(b)) arctan ( T oz T)

which closes the position loop or the arm-control mod-
ule (Figure 2(c)) sending velocity requests to the platform. Here v, , andv, , are the robot’s linear velocities in the

Therefore, the velocity control loop has to:

1. ensure adherence to the non-holonomic constraintsﬁ

(a) identify the valid configuratiofz,, 2,)
(b) derive a valid trajectory3,, 3., 34, 3,)
(c) respect the actuator limits, ,, $,.,,)

2. approach the commanded velocities fast

3. compensate the steer/drive-coupling

ICM based velocity controller

VVIMll-CtrI WIMZI-CtrI WIM3I-CtrI VVIM4I-CtrI
- I b s
o B

Figure 2: Schematic of Care-O-b8t 3's software-

robot coordinate systemy,. its rotational velocity and
maz 1S @ Norming factor. Hence, the kinematics equa-
ons can be reformulated to calculate steering angles and
rotational rates as a function of the spherical twist-vecto

(6.80) = Forent) @)

(6.2 = VP (hnonds) . @

2.2 Input Saturation and State Constraints

This state space representation and the according inverse
kinematics equations become singular, when the instanta-
neous center of motion (ICM) passes through one of the
steering axis. In effect, the steering velocity of a wheel
grows unbounded, as the ICM moves close to that wheel.
However, due to the non-holonomic constraints of the sys-
tem it is unfeasible to simply constrain the commanded
steering velocitieg, to their maximum values. Doing so
destroys the synchronicity of the wheels and leads to actu-
ator conflicts, causing unsteady motions or damaging the
actuators.

In [10] a potential-field based controller was applied to
avoid the critical regions by representing them as repul-
sive potentials. However, due to the limited time resolu-
tion problems such as oscillations in the vicinity of the re-

structure. The ICM based velocity controller synchronizespulsive potentials were encountered. The introduction of
the motion of all wheels. The WMx-controllers synchro- a predictive horizon, which can be motivated through the

nize the steer and drive motors of the single wheels.

MPC formalism, has the potential to remedy these prob-
lems.
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3 Model Predictive Control where.J* and J* penalize control effort and deviation of
current and target staté; ;, with () and R being positive
3.1 General Approach semidefinit matrices. The singular regions are incorpdrate

. - . . __into the objective function via a sum of repulsive poteistial
The idea of model predictive control is to solve an optimal

2
control problem for a system Jo 10 (% _ %) Vo <o (13)
Tr+1 = ATy + By, , (5) 0 YV ri>rg
where}, is the vector of system stateg, the vector of o, — 2\ 0, — 62\
input variables A the matrix representing the system dy- ri = (T " Z) + (b Z) , (14

namics andB is representing the influence of the input

variables on the system. The MPC approach then deriveghereM is the number of steerable wheefs, is a scal-
the inputii;, such that it optimizes the objective function ing factor to adjust the gradient of the repulsive potestial
ro constrains the region of influence of the potential fields

N-1
_ oafm N and(¢y, 6)¢ is the position of theé-th wheel’s steering axis.
J=olEn) + kzzo L, @, k) © A exemplary resulting potential is depictedHigure 3.

over a finite time horizonV, by predicting the future de-
velopment of the system. In this conteXtz ) penalizes
a deviation of goal state and predicted end state Al 1
the Lagrangian of the system.

Potential in(z, y)-plane

3.2 Control Law Formulation

The system state is composed by the variables
(p,., 0., 0-)T describing the kinematic configuration of
the system according to equation (2). To achieve a smootl
system behavior an additional integration step is added t
the inputs of the system. Therefore, the system is aug
mented by the additional staté,,¢,,0,)T. The first
variable p, — associated to the system’s degree of mo-
bility J,,, or the robot velocity’s absolute value — has no ‘ :
influence on the steering commands to be synchronizec k! -0.5 0 0.5 1
Therefore, in the following we omit it in the system state. o [m]

Hence, the vectof, representing the system state of the (a) Resulting potential field (repulsive and attractiveimrtesian space
pseudo-omnidirectional undercarriage and the inputerect Potential in(¢, 6)-plane

1, become ; ; ‘

.yICM [m]

. T
fr - ((Prv 07“7 Sbru 07”) ’ (7)
iy = (ForFpr)" . (8)
The system dynamics become

Tk + .’Eg’kAT + ’U;leATQ

S To g + 24 ) AT + ZEAT?
Lk, U, = i ’ C2 9
f( ) T3k + uLkAT )

Tak + u27kAT

wherec; andc, are additional integration constants]’
is the duration of the discrete time-steps ahd= 9//sz,

: : . -2 1 0 1
while B = 9f/aa. Following both constants; and c, Doy [rad]

are set equal ta, to allow a more convenient writing. A
straight forward choice fof is

(b) Resulting potential field (repulsive and attractiveypherical space

o e X 1o Figure 3: Objective function ovefy, f) resulting from re-
= J+J04 2 Jis (10) pulsive potentials of all wheels and the attractive pognti
.= B B for a goal configuration atp, ) = (17 rad, 27 rad), with
T = 2 (@an — ) Q@ak —Fk), (A1) k=6, =8, = 1.4,a = 0.5, b = 0.15. (dark blue:
JY = 12 i} Riy,, (12) low potential; dark red: high potential)
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3.3 Optimization by Gradient Descent 4 Results

As proposed in [16, 17] optimization is done by gradient
descent based on the Pontryagin minimum principle (PMP
|n|tS d-iscrete fOI-‘mU-lation. The basic idea of the PMP is tOThe proposed approach is evaluated in simulation with re-
minimize the objective functional from equation (10) by = spect to the specific kinematics of Care-O®dB. The

.1 Simulative Results

formulating a Hamiltonian system is simulated with a time step size20fms. The
L ST o simulation takes into account a transport delay of the mea-
Hy = L(Zr, k) + Ny [ (Th, k) (15)  sured sizes 010 ms and the restrictions on velocity and

and performing iterated gradient descent by propagatingcceleration of the wheel modules.
the costate — the Lagrange mu|t|p||e\fs_ from the pre- Simulation was performed for the |mplemented MPC

dicted end stat& backwards in time based (blue dash-dotted lineskigure 4) as well as for
the earlier implemented conventional PF based controller

X: = 877;[ (16) (dotted black lines). To simplify comparison of the results
Oz}, the controllers were tuned to be similar fastFigure 4(b)
. T M aJ? T 9 f(g?k, i) One can see, that all targets are reached at approximately
= ~(@ar — ) Q+ Z OZx T )\kJrlek the same time for both controllers. For the last set point
=0 (reached at about = 8s) the controllers deviate if only
Xi = 87? (17) their single components are taken into account. Still the
OTN total time for both variables is similar. This is due to the

over the prediction horizon. To limit the derivative of the fact, that they bypassed the last singular region on differe
original stateg ¢, #) of the ICM the optimization is per- sides Figure 4(a)).

formed w.r.t. a desired state chang@e, . édyk)T instead Already on first sight Figure 4(a)) it becomes apparent,

of a desired state. Similar to [11] we calculate a steadyhat the MPC approach shows a much smoother behavior
state velocityJZ:e,L;c based on the quotient of weighting co- than the PF controller. The latter one tends to oscillations

efficients in@ in the vicinity of the repulsive potentials. Moreover, one
. can seeKigure 4(c)) that the steering velocities associated
Peqr = —W/an(Par — Pr) (18) {5 the MPC based controller stay significantly lower than
Ocqe = —922/qus(Bar — 1) (19)  those of the PF approach.

5 /. 52
meq,k‘ = ‘qu,k + eeq,k ' (20)

The desired statgp,, 04) is then derived by constraining
the steady-state velocities to a certain limit

4.2 Experimental Results

The proposed approach is experimentally evaluated on the
Care-O-bd® 3 mobile platform. The control-rate of the
i system is set to 20ms. The prediction horizon is 16 time-
¢q = min| 1, | Qo (21)  steps (320 ms) long. The control inputs are generated man-
Teq,k ually using a joypad.
The results for an experimental run, where the set points
N . Tmaz ; were repeatedly set to pass through the singular regions
0o = min{1, P Oeqn - (22) are depicted irFigure 5. In Figure 5(a) one can see how

oo the controller avoids the critical regions. Accordinglgth
For the actual optimization process; and ¢q; are then resulting steer-rate commands stay significantly lowen tha
set to zero. Therefore, the inputs are optimized toward40 rad/s Figure 5(b)).
achieving the maximum allowed velocCi#,, ..
The according input8;, are then calculated according to

5 Conclusion

: : oM\"
@ = @ '-K (?) Lwith — (23) L _
' Otiy, Within this work, a model predictive scheme was applied
OH . Of (T, k) to the inner-loop control for the undercarriage kinemat-
9 i R+ )\zﬂw ; (24)  ics of the pseudo-omnidirectional mobile robot Care-O-

, bot® 3. To ensure adherence to the non-holonomic con-
where, is the command-input at stépcalculated during  straints control was performed in the spherical representa
the j-th iteration step and{ adjusts the step-width dur- tion of the velocity space. To ensure avoidance of the sys-
ing one iteration step. It has to be noted, that the objectiveem’s singular configuration and guarantee limited inputs,
functions for the obstacles are not differentiable in its cu the objective function is constituted by the earlier detive
rent formulation. Thus, applying the PMP is not guaran-potential fields.
teed to deliver an optimal solution.
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_ The simulative results show, that the MPC based approach
Path of ICM in(y, 6)-plane clearly outperforms the PF based controller. While achiev-

15 ing similar fast tracking of the set-point values, the MPC
approach shows a much smoother path within the state
Ir space and causes significantly lower steering rates. These
‘ properties are confirmed by the experimental results ob-
| tained with the Care-O-bt 3.
3 One disadvantage of the MPC approach is the large num-
3 or ber of tunable parameters and the sensitivity of the PMP to
>

parameter changes. For instance, even slight modifications
of the parameteK in equation (23) can lead to divergence
of the procedure. Moreover, it has to be noted that the pro-
posed approach is not guaranteed to find a global optimum,
as the employed objective functions are not continuously
differentiable over the full state space.

Path of ICM in(¢p, #)-plane
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(c) Resulting wheel steering rates in all wheels (b) Resulting wheel steering rates in all wheels

Figure 4: Results for MPC (blue dash-dotted) and PF (redFigure 5. Experimental results obtained for ME’C b_ased
dots) based controller for a sequence of four target corcOntrol (blue dash-dotted). The black dotted lineFin

figurations (red dashed circles) and a maximum velociyfureé 5(a) indicates the desired state-trajectory. The re-
dmas = 1mrad/s. sults were obtained faV = 16, K = 0.065 and,,,q, =

1mrad/s.
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Outlook

The future plans are twofold: On the one hand, itis planned
to investigate our approach in context with people tracking

which requires a high mobility of the robot. On the other [

hand, it is planned to investigate if further development of
the velocity centered optimization approach can improve
the convergence by constraining the effective step width
during optimization.
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