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Abstract

The routine use of existing solutions in the development of new systems

is a key attribute of every mature engineering discipline. Software reuse

is indeed the state of the practice in various application domains, such as

telecommunications, enterprise resource planning, automotive and avionics.

One of the key factors that enable the development of reusable software is

the flexibility, which is the ease with which a system or a component can be

modified to be used in applications or environments that are different from

those for which it was originally designed.

In robotics software reuse is still at an early stage. This is mainly due

to the complexity and the huge variability that characterize this particular

domain. The complexity makes the development of reusable software a task

that requires advanced software engineering techniques, which are not always

mastered by robotics experts. The variability of hardware, environment

and task instead makes frequent and quick the changes that occur in the

application requirements.

The research documented in this thesis investigates new approaches for

the development of component-based robotics systems, which are flexible

enough to accommodate the changes that are likely to occur to the software

requirements. Addressing the flexibility of robotics software systems and

variability modeling and resolution are thus the main topics of this document.

The first contribution of this thesis is a software development process that
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explicitly takes into account the variability. The process is based on two of the

most recent and promising approaches to software reuse, namely the Software

Product Lines (SPL) and the Model Driven Engineering (MDE). This thesis

describes the process, illustrates a set of models and tools that have been

developed for supporting it, and exemplifies its application by means of the

robust navigation case study.

The second contribution instead consists of a set of tools and approaches

that have been designed in order to develop component-based system with an

high level of flexibility and reusability. In particular this approaches focus on

addressing the software framework variability and the hardware variability.
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1
Introduction

Recent advances in robotics and cognitive sciences have stimulated expecta-

tions for emergence of a new generation of robotic devices that interact and

cooperate with people in ordinary human environments.

Simple robotic devices for tasks such as cleaning floors and cutting the

grass have met with growing commercial success thanks to their low cost and

single purpose design. At the same time, more sophisticated robotic devices

such as DLR Justin [1], Care-O-bot 3 [2] and Willow Garage PR2 [3] have

been developed for more advanced tasks, such as housekeeping and elder

care, further raising expectations but without meeting yet a corresponding

commercial success. Versatility and complexity are their distinguishing factors.

Complex means that robots are built by integrating an increasingly larger

body of heterogeneous resources. Robotic resources here means the whole set

of hardware, software, physical, and virtual entities of limited availability that

the robot requires and must manage appropriately in order to accomplish

its tasks. These include (a) computation and communication resources, (b)

hardware devices, subsystems, and systems, (c) robot functionality, and (d)

the physical environment.

Even a simple robotic application, like moving a wheeled robot from place

A to place B in an indoor environment, requires several capabilities, such

as (1) sensing the environments in order to avoid unexpected obstacles (i.e.

moving people), (2) planning a path from A to B taking into account several

constraints (e.g. energy consumption), (3) controlling the actuators in order

1



2 1 Introduction

to execute the computed path correctly (i.e. with a given accuracy), and (4)

reasoning about alternative courses of actions (e.g. waiting for a passage to

get clear or plan a different path).

Sensing, planning, controlling, and reasoning, are human-like capabilities

that can be artificially replicated in an autonomous robot as software systems,

which implement data structures and algorithms devised on a large spectrum

of theories, from probability theory, mechanics, and control theory to ethology,

economy, and cognitive sciences. Software plays a key role in the development

of robotic systems, as it is the medium to embody intelligence in the machine.

Computing infrastructures of mobile robots have recently evolved from sin-

gle processor systems to networks of microcontrollers, sensors and actuators,

introducing great flexibility in robot capabilities construction. This enables

the development of complex robotic systems with hardware/software building

blocks that are designed to optimally implement specific functions but whose

design is not specific of the robot that integrates them. An example of such

building block is the Bluebotics localization subsystem [4]. The number of

open source libraries that provide robotics functionalities is growing expo-

nentially thanks to the federated repository and decentralized development

approach promoted by the Robot Operating System (ROS) initiative [5].

The new trend, which started only recently, is toward a novel robotic

systems engineering approach that fosters an improved reusability of robotic

hardware and software components, and promotes a new market, where

complex and powerful systems are built by customizing and integrating

reusable building blocks. One of the key attributes of a mature engineering

discipline is indeed the routine reuse of existing solutions in the development

of new systems.

System openness and flexibility are key factors that enable the development

of reusable software. If a system is flexible, its functionality can be customized

by replacing individual components. If a system is open, individual research

groups can contribute to its evolution by providing leading edge research

solutions.

State-of-the-practice in robotic software reuse however is still at an early

stage. This may be due to cultural factors (robotics has traditionally been
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the realm of experts in mechanics, electronics, automatic control, computer

vision, and artificial intelligence), to contingent factors (so far there has

been no sustained push to design reusable and interoperable software), but

also to technological and scientific challenges due to the complexity and the

variability.

• Complexity. Software for advanced robotics systems is typically embed-

ded, concurrent, real-time, distributed, and data intensive. In addition,

robotics software must exhibit specific system properties, such as safety,

reliability, and fault tolerance. Developing modular and reusable soft-

ware components, systems, and applications demands for advanced

technical skills both in software and system engineering. Advanced

concepts such as software flexibility, portability, scalability, and interop-

erability must be adequately mastered.

• Variability. Robot systems are highly change-centric systems. Robotics

is an experimental science that can be analyzed from a double perspec-

tive. On one hand, it is a discipline that has its roots in mechanics,

electronics, computer science and the cognitive sciences. In this regard,

software plays the role of integrator, implementing and bringing together

advanced research results in order to build complex robotic systems. On

the other hand, Robotics is a research field that pursues ambitious goals,

such as the study of intelligent behavior in artificial systems. As a con-

sequence, reusable robotic software artifacts need to be flexible enough

to capture quickly-changing technological and functional requirements.

More specifically, robot hardware variability, environmental variability,

and task variability are major barriers to software reuse. Addressing

this challenge demands for a deep knowledge and understanding of the

application domain, both in terms of core aspects (entities, functionality,

properties) of the domain that are unlikely to change, since they are

part of the essence of the domain, and in terms of technological and

functional requirements evolution trends.

Despite the severe challenges that researchers and developers have to face

in order to introduce software reuse practice in robotic system development,
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robotic software reuse is both technologically feasible and economically ad-

vantageous. More strongly, software reuse is mandatory in order to make

robot software development sustainable in a fast evolving market, where

recent advances in robotics and mechatronics technologies have stimulated

expectations for emergence of a new generation of robotic devices that interact

and cooperate with people in ordinary human environments.

In this context, the research performed during my PhD investigated new

approaches for the development of component-based robotics systems, which

are flexible enough to accommodate the changes that are likely to occur due to

the huge variability in terms of hardware, environment and task. Addressing

the flexibility of robotics software systems and variability modeling and

resolution are thus the main topics of this thesis, which will be discussed in

the next chapters.

1.1 Thesis structure

The next chapter introduces the concepts of flexibility and analyzes the

variability that characterizes the robotics domain. In particular it describes

how the variability of hardware, environment, task and software framework

influences the design of robotics software systems by taking as example the

robust navigation.

The rest of the document is organized in two parts. Part I describes how

the concepts coming from two of the most recent and promising approaches to

software reuse, namely the Software Product Lines [6] and the Model Driven

Engineering [7], have been applied for modeling and resolving the variability

in component based Robotics systems.

• Chapter 3 introduces the reuse oriented development process that was

defined for developing flexible and reusable component-based Robotics

product lines.

• Chapter 4 presents the meta-models and the tools designed for support-

ing the development process. In particular a set of software framework
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independent Meta-models have been defined, which can be easily ex-

tended for taking into account Software Framework specific concepts.

The chapter introduces the concrete meta-models for two of the most

spread Robotics software frameworks (i.e. ROS and Orocos) and for

SCA.

• Chapter 5 deepens one of the stages of the Software development process,

namely the refactoring, and presents a set of guidelines that describe

how to refactor existing open source software libraries in order to

facilitate their encapsulation in reusable components. The chapter also

illustrates, by means of a case study, how the theoretical guidelines

have been applied for analyzing open source implementations of best

practice libraries for motion planning and for refactoring one of them.

Part of the result presented in this chapter are also documented in [8].

• Chapter 6 describes how the development process previously presented

has been applied to the Robust Navigation domain for defining a new

Product Line, which allows the modeling and the resolution of the

Robust Navigation variability.

Part II describes a set of tools and approaches that have been designed in

order to develop component based systems with a high level of flexibility and

reusability. Chapters 7, 8 and 9 focus on addressing the software framework

variability and the programming language variability. Chapter 10 focuses

instead on the robot embodiment variability.

• Chapter 7 faces the problem of integrating the component based robotics

software frameworks with the possibility of accessing the World Wide

Web (for example for retrieving useful information such as map of the

environments, 3D models of furniture or images of objects commonly

available at home). This possibility is typically provided by the Service

Oriented Architectures (SOA), which are widely spread in the domain of

the web based applications. In this direction a Java library that allows

the cooperation of SCA components and Orocos components have been
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designed and is presented. The results presented in this chapter are

also documented in [9].

• Chapter 8 presents a study on the comparison of performance between

Java and C++. The goal is to quantify the differences and to offer

a set of data in order to better understand whether the performance

of Java allows to consider it a valid alternative to C++ or not, at

least for non-real-time functionalities. The results of this study support

the idea of building hybrid systems, similar to the ones promoted in

chapter 7, where C++ is used for real-time functionalities and Java for

non-real-time functionalities. The results presented in this chapter are

also documented in [10].

• Chapter 9 faces the problem of decoupling the Computation and Co-

ordination concerns during the design and development of component

based robotics systems. In particular two different frameworks are used

for orthogonally modeling the two concerns: the Service Component

Architecture (for the computation) and the Abstract State Machine (for

the coordination). The result, presented by means of a case study, is

the design of a system in which the functionality implementation and

the coordination policy can be changed independently (i.e. it is possible

to change the coordination policy without modifying the functionality

implementation, and vice versa). The results presented in this chapter

are also documented in [11].

• Chapter 10 describes how the Model Driven Approach can be applied to

the representation of the kinematics and dynamic constraints of mobile

robots. These constraints can be modeled by means of differential

equations and are typically used for simulation and sampling based

path-planning algorithms. Thanks to the MDE approach the robot

differential model is described in a document written according to a

specific Domain Specific Language (DCML). This document can be

automatically transformed in the source code that implements the

differential equations and finally integrated with the simulator or the
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path planner. In this way the algorithm code is not hard-coupled to

the code that implements the differential model of the robot and, as a

consequence, it is more flexible and reusable. The results presented in

this chapter are also documented in [12].

Finally chapter 11 draws the relevant conclusions.
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2
Flexibility and Variability in Robotics Systems

In the software engineering context a software architecture is typically de-

fined as the structure or structures of the system, which comprises software

components, the externally visible properties of those components, and the

relationships among them [13]. Components are units of implementation

and represent a code-based way of considering the system. Thus, the robot

software architecture describes the decomposition of the robot control system

into a collection of software components, the encapsulation of functionality

and control activities into components, and the flow of data and control

information among components. The design or selection of the software

architecture specifically takes into account non-functional requirements of a

robotic software system (maintainability, portability, interoperability, scal-

ability), that is, those requirements that characterize software quality and

enable software reuse.

Ideally, components embedding common robot functionality should be

reusable in different robot control systems and application scenarios, and

thus they should not be bounded to specific robotic hardware, software-

development technologies, or control paradigms. For example, a fully reusable

component implementing a mobile robot navigation algorithm should be

designed without implicit assumptions about the computational environment

(e.g., stand-alone application or distributed system), the possible use (e.g.,

map building or object tracking), and the robot mechanics (e.g., kinematic

model).

9
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In reality, designing reusable components, which can be composed for

building flexible systems, consists in finding the best trade-off between being

too specific (less reusable) and too generic (less valuable). Three aspects of a

reusable component are equally important:

• Quality. The quality of a robotics component typically regards the

performance and the reliability of the functionality that it encapsulates.

• Functional reusability. Typically a software architecture is made of two

types of components: horizontal and vertical. Horizontal components

provide domain-independent functionalities such as hardware drivers or

communication service. Vertical component provides instead domain-

specific functionalities such as motion planning or kinematics. Vertical

components contribute up to 65% to software reuse while horizontal

components no more than 20% [14].

• Technical reusability. Technical reusability is mainly concerned with

the components’ degree of openness and flexibility. A software compo-

nent can be considered open if its specifications are public, it provides

well defined interfaces that promote interoperability1 with third-part

components, and it is portable2 among multivendor equipment. While

the definition of openness is simple, the definitions of component flexi-

bility and system flexibility deserve instead more attention and will be

addressed in the next section.

2.1 Flexibility

Flexibility is a concept that has different meaning in different disciplines.

Intrinsic to the notion of flexibility is the ability or potential to change and

1The IEEE Standard Glossary of Software Engineering Terminology defines interoper-
ability as the “ability of two or more systems or components to exchange information and
to use the information that has been exchanged” [15].

2The IEEE Standard Glossary of Software Engineering Terminology defines portability
as “the ease with which a system or component can be transferred from one hardware or
software environment to another” [15].
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adapt to a range of states. The common ground on which all disciplines agree

is that flexibility is needed in order to cope with uncertainty and change, and

that it implies an ease of modification and an absence of irreversible or rigid

commitments.

The IEEE Standard Glossary of Software Engineering Terminology defines

flexibility as the “ease with which a system or component can be modified

for use in applications or environments other than those for which it was

specifically designed” [15].

The term environment refers to the complete range of elements in an

installation that interact with the component-based software system. This

includes the computer and network platform, the controlled robotic hardware,

and the robotic applications that integrate the reusable components. More

specifically, flexibility is concerned with the portability of software control

system on different robotic platforms (e.g. from a car-like to a omnidirec-

tional wheeled robot), the interoperability among independently developed

components (e.g. components interfacing heterogeneous robotic devices), and

the reusability of individual components in different application contexts (e.g.

a motion planner for static or dynamic environments).

Flexibility of software artifacts depends upon the type of the artifact, the

development environment, and the evolution of the artifact’s requirements.

• Flexibility is related to the type of software artifact in the sense that

properties belonging to the source code, the architecture and the tech-

nology used can improve or degrade it. The source code and architecture

of the program should be comprehensible and they should make possible

to implement changes with easiness.

• The development environment also affects flexibility. One of the most

effective ways of dealing with changing requirements is to adopt an

agile process for the development of new software. The team should

share knowledge regarding the product that must be maintained so that

it will be easier to understand which parts of the program should be

modified. Lastly the experience of individuals and the quality of every

person in the team, as well as the quality of the team as a whole, play
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a central role in reducing the mean time to implement a change request

in the program.

• Finally, flexibility depends upon the type of changes in the require-

ments, which typically imply modification to the design of the software

components and the system architecture.

While the first and the second points are more related to the developers and

their discipline, the system requirements depends only on “external” factors,

which cannot be directly controlled (they are indeed typically specified by a

customer and also depends on the environment and the available hardware).

Moreover, due to the intrinsic change-centric nature of robotic applications,

functional and non-functional requirements are characterized by frequently

changes.

The most efficient way for addressing the flexibility is therefore being able

to predict the class of changes that are likely to occur in the requirements

over the lifespan of robotic software components. These changes affect indeed

the portability, reusability and interoperability of software components and

systems. Being able of anticipating them allows the design of a system

architecture that can be easily adapted and reconfigured for supporting the

new requirements.

The capability of predicting the requirement changes can be achieve by

performing a stability analysis of the domain, which aims to identify the

aspects of the domain that are likely to remain stable over the time and

separate them from the aspects that are likely to change due to the variability

that characterizes the domain. The core of the designed software should be

consequently based on these stable concepts, in such a way to be reusable

in different applications. Modifying the software for accommodating new

requirements will therefore consist in modifying its periphery (variable part)

and not its core part.

In conclusion, despite the variability of a domain makes harder the main-

tenance of software systems in front of new requirements, it is not a drawback.

Conversely it has to be analyzed and exploited in order to design flexible
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components and systems architectures, which can be easily reused for different

applications with different requirements.

2.2 Variability in robotics

A large variety of today’s robotic systems is designed according to a small

number of robot control architecture paradigms, the most common being

the Sense-Plan-Act paradigm and the Layered-Control paradigm (see [16] for

a survey.) According to the Sense-Plan-Act paradigm, robot control is the

process of taking information about the environment, through the robot’s

sensors, processing it as necessary in order to make decisions about how to

act, and then executing those actions in the environment [17]. The Layered-

Control paradigm [16] prescribes a clear separation of robot functionalities

according to their time scale: the decision layer combines task planning,

scheduling, and coordination capabilities; the functional layer provides the

typical functionalities for perception, environment representation, localization,

navigation, manipulation; the reactive layer implements the low level feedback

control loops for motor control, obstacle avoidance, trajectory following.

Despite the architectural similarities, the software that implements robot

control applications differs significantly from system to system. These dif-

ferences relate, for example, to the data structures defined to store relevant

information (e.g. the map of the environment, the robot kinematic model),

the application programming interfaces (APIs) to drive sensors and actuators

[18] and the information model used to represent key concepts (e.g. geometric

relations and coordinate representations). These differences are basically due

to the huge variability in robot technology and system requirements.

A milestone paper of Rodney Brooks [19] identifies a set of properties

of every robotic system, among which three are of interest for this thesis

as they represent three variability dimensions that affect the design and

implementation of robot control systems, namely situatedness, embodiment,

intelligence. An additional dimension in robot variability is represented by

the set of software frameworks that have been specifically designed during

the last decade for developing robot control systems.
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The next subsections illustrate the four dimensions of robotic variability

taking the functionalities for the navigation of robots as an example.

2.2.1 Robot situatedness variability

Robot situatedness refers to the fact of existing in a complex, dynamic, and

unstructured environment that strongly affects the robot behavior. For

example, the environment is a museum full of people where a mobile robot

guides tourists and illustrates masterworks, or a game field where two robot

teams play soccer, or a manufacturing work cell where a mobile manipulator

transports work pieces.

Situatedness implies that the robot is aware of its own posture, in one

place at a given time. According to the operational environment, the robot

can use different sensors and techniques for 3D perception and localization.

For example, a GPS cannot be used inside a building and outdoor it can

provide only rough estimate of the robot pose. A stereoscopic vision system

can provide accurate 3D information about the surrounding environment but

is highly sensitive of the environmental lighting conditions. A laser rangefinder

is also highly accurate but cannot detect transparent surfaces, such as a sliding

glass door. When possible, the environment could be structured in such a

way that the robot can localize itself easily, e.g. by placing visual landmarks

in known positions.

Situatedness also implies that the robot can detect and represent the

posture of the surrounding objects (walls, furniture, people, etc.). According

to the environment characteristics (e.g. highly cluttered, open spaces, long

corridors, etc.) and to the robot task, different types of map can be used to

represent the operational environment. A continuous geometric representation

is adequate to represent the floor of a building with rooms and corridors,

while a topological representation is adequate to represent the streets of a city

or the hallways of a large building. If the environment is dynamic, the robot

should be able to represent static and moving objects explicitly. A hybrid

topological-geometric map could represent the positions of visual landmarks

and the pathways that connect them.



2.2 Variability in robotics 15

Robot control applications strongly depend on the type of sensors, map,

and environment, since different algorithms are used to process sensory

information (e.g. filtering, interpreting, fusing), to update the map of the

environment, to localize the robot with respect to the map, and to plan an

obstacle-free path.

2.2.2 Robot embodiment variability

Robot embodiment refers to the consciousness of having a body (a mechanical

structure with sensors and actuators) that allows the robot to experience

and interact with the world. The robot receives stimuli from the external

world and executes actions that cause changes in the world state. Simulated

robots may be “situated” in a virtual environment, but they are certainly not

embodied.

Sensors allow the robot to perceive the environment’s changes and to react

to them by changing its own behavior (e.g. the detection of a very closed

obstacle causes the robot to switch from the operating to the emergency

mode). By means of its sensors the robot experiences the effect of its actions

on the environment through the effects that such actions produce.

With increasing computational power made available by advances in

microelectronic technology, smart sensors and actuators integrate sensing,

actuating, processing, and networking elements into a single device. They

improve the modularity of the computing infrastructure by locally performing

some signal-processing tasks but at the same time increase the complexity of

software applications, which become highly distributed and decentralized.

Despite the semantic similarities between the operations supported by

similar devices (e.g. all ranging devices provide distance measurements, all

rovers provide wheeled mobility), the externally visible behavior of the software

that abstracts and interfaces to each device greatly depends on the device

hardware architecture [18]. There are devices that have their analog and digital

signals directly mapped to memory registers on the central processor. For these

devices, all basic functionality (e.g. measurements filtering, image processing,

pulse-width modulation (PWM) motor control, camera synchronization, etc.)
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are implemented in software, which thus requires dedicated computational

and synchronization resources. On the other hand, there are devices that

implement much of their low-level functionality in their firmware and thus

reduce the load on the central processor.

Furthermore, the robot mechanical structure greatly influences the im-

plementation of individual functionalities and even the architecture of the

software application that controls the robot. For example, the control algo-

rithm that drives the robot along the computed trajectory depends on the

kinematics model of the rover (i.e. a differential drive or an omnidirectional

rover). As another example, a video camera can be attached to the wrist of

a manipulator arm mounted on the rover. In order to interpret the camera

images correctly (i.e. for rover localization), the position of the camera should

be tracked while the arm is moving. This functionality is not required if the

camera is mounted on the rover in a fixed position.

2.2.3 Robot intelligence variability

Robot intelligence refers to the ability to express adequate and useful behaviors

while interacting with the dynamic environment. Intelligence is perceived as

“what humans do, pretty much all the time” [19]. The concept of intelligence

(the ability of expressing useful behavior) is quite elusive. It is usually

associated to other concepts, such as: autonomy, i.e. the robot’s ability to

control its own activities and to carry on tasks without the intervention of

the human operator; deliberativeness, i.e. the ability of planning and revising

future actions in order to achieve a given goal while taking into account the

mutable conditions of the external environment; adaptability, i.e. the ability

of changing its behavior in response to external stimuli according to past

interactions with the real world.

In complex robot control applications, several activities interact with the

hardware devices and with each other concurrently. For example, the robot

uses a 3D depth camera for both map building and for obstacle avoidance,

controls both the base and the arm of a mobile manipulator for object

grasping, control the wheel motors to follow a path while it is replanning the
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path. Typically, low-level control loops regulating the robot motion are better

implemented according to the synchronous data flow model of computation,

where the control software periodically requests new measurements from

sensors (e.g. encoders) and sends motion commands to the actuators. Higher-

level activities (such as motion planning and task planning) interact mostly

according to the asynchronous event-based model of computation in order to

react promptly to changing conditions in the operational environment (e.g.

an unexpected closed door).

In Robotics, the coordination of concurrent activities is typically control-

driven and modeled using state-charts and finite states machines, which

define the state of the computation of the entire system at any moment in

time in terms of the current internal state of each component. Components

observe state transitions in the systems by listening to events notified by

other components.

2.2.4 Software frameworks variability

During the last few years, many ideas from software engineering (such as

component-based development and model-driven engineering) have been

progressively introduced in the construction of robotic software systems, in

order to simplify their development and improve their quality (see [20] for a

survey).

Compared to more traditional business applications, in Robotics the soft-

ware developer faces the complexity of event-based, reactive, and distributed

interactions between sensors and motors and between several processing

algorithms. Managing concurrent access to shared resources by multiple (dis-

tributed) activities is one of the main issues, as thoroughly discussed in [21].

For this reason, robotic-specific component-based frameworks and toolkits

have been developed (ROS, Orocos, OpenRTM, Opros, Smartsoft, Yarp and

many more), which offer mechanisms for real-time execution, synchronous

and asynchronous communication, data flow and control flow management,

and system configuration.

This subsection introduces two of the most spread robotics software
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framework: ROS and Orocos. Moreover one of the most used software

frameworks in the context of the Service Oriented Architectures, namely SCA,

is presented. Despite SCA is not robotics specific, it will be used several times

along the chapters of this thesis.

All these software frameworks share two characteristics, which are however

implemented in a different way (they are further discussed in the part I of

this document).

• They provide a component model, which defines a set of architectural

elements (e.g. components, interfaces, connection) and the rules for

composing them in order to build a component based systems. These

component models, except in the case of SCA, are typically not explicitly

modeled (i.e. they are not formalized according to the principles of the

Model Driven Engineering), and, despite they provide similar concepts,

they differ syntactically.

• They provide a runtime infrastructure (in this document it is called

deployer or runtime), which is in charge of instantiating, connecting,

configuring and activating the components that are part of the system.

The deployer executes these operations according to a set of instructions

that are typically defined in an XML file (in this document it is called

deployment file).

The rest of this subsection provides a brief overview of ROS, Orocos and

SCA.

The Robot Operating System

The Robot Operating System (ROS )[22] is a message-based peer-to-peer

communication infrastructure supporting the easy integration of independently

developed software components, called ROS nodes. A ROS system is thus a

computation graph consisting of a set of nodes communicating with each other.

Nodes are blocks of functional code and are implemented as classes (typically

in C++ or Python) that wrap robotic software libraries and provide access

to the communication mechanisms of the underlying infrastructure (the ROS
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core). Messages are typed data structures that can be nested into compound

messages and are exchanged between nodes according to the publish/subscribe

communication paradigm in an asynchronous manner without the need for

the interacting nodes to know each other and to participate to the interaction

at the same time. ROS is currently the most popular robotic framework,

due to the toolchain support (tools for compiling, deploying, debugging and

plotting) and to the huge amount of open source libraries packaged as ROS

nodes.

The Open RObot COntrol Software

The Open RObot COntrol Software (Orocos)[23] is one of the oldest open

source software frameworks in robotics, under development since 2001, and

with professional industrial applications using it since about 2005. The focus

of Orocos has always been to provide a hard real-time capable component

framework, the so-called Real-Time Toolkit (RTT) implemented in C++

and as independent as possible from any communication middleware and

operating system. Components interact with each other by exchanging data

and events asynchronously through lock-free input/output ports according to

the Data Flow communication paradigm. The distinguish feature of OROCOS

is the definition of a component model that specifies a standard behavior for

concurrent activities. Components with real-time, deterministic and cyclic

behavior get fixed and cyclic time budgets for computation and within a

computation cycle they must reach stable intermediate states.

The Service Component Architecture

The Service Component Architecture (SCA)[24] defines a model for creating

component-based applications that follow the service oriented architecture

principles. The first version of its specification was released in March 2007

and was the result of the collaboration of different partners such as IBM and

Oracle.

SCA defines a generalized notion of a component, where provided interfaces

are called Services and required interfaces are called References. Services
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and references are thus typed by interfaces, which describe sets of related

operations that can be invoked synchronously or asynchronously.

The components in a SCA application might be built with Java or other

languages, or they might be built using other technologies, such as the

Abstract State Machines Language (ASML) (see chapter 9).

SCA is supported by graphical tools, which build on the Eclipse Modeling

Framework [25] and allow the generation of a deployment file from a graphical

representation of components and systems. ROS and Orocos do not provide a

similar tool. However during the BRICS Project an Integrated Developed En-

vironment (BRIDE)[26] was developed, which allows the design of deployment

files for ROS and Orocos starting from a graphical representation.
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Variability Modeling and

Resolution
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3
A Reuse Oriented Development Process

The routine use of existing solutions (i.e. reuse) in the development of new sys-

tems is a key attribute of every mature engineering discipline. Software reuse

is a state of the practice development approach in various application domains,

such as telecommunications, factory automation, automotive, and avionics.

Software Engineering has produced several techniques and approaches for

promoting the reuse of software in the development of complex software

systems. A survey can be found in [27] (Sidebar A Historical Overview of

Software Reuse).

In Robotics, software reuse is typically conceived as cut and paste of code

lines from program to program: this practice is called opportunistic software

reuse and might work only for the development of simple systems (e.g. for

educational purposes) or for unique systems (e.g. a research prototype). Most

of the best practice software libraries for robotics are based on software archi-

tectures invented from scratch each time. Many valuable robotic applications

are monolithic systems that have been developed to solve a specific class of

problems.

In contrast, the development of industrial-strength robotic systems that

aim to become commodity, require a systematic approach to software reuse.

Systematic software reuse is the routine use of existing software or software

knowledge to construct new software, so that similarities in requirements,

architectures and design between applications can be exploited to achieve

substantial benefits in productivity, quality and business performance.

23
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If a company that commercializes integrated robotic systems wants to

achieve customer value through large commercial diversity with a minimum of

technical diversity at minimal cost, the best approach to software development

is the Software Product Line (SPL)[6].

An SPL is a set of applications (products) that share many (structural,

behavioral, etc.) commonalities and together address a particular domain.

The term domain is used to denote or group a set of systems (e.g. mobile

robots, humanoid robots) or functional areas (motion planning, deliberative

control), within systems, that exhibit similar functionality. Each new ap-

plication is built from the SPL repository of common software assets (e.g.

architectural and design models, software components).

In order to exploits the SPL approach, a new software development process

has been defined. This process accounts for two peculiarities of the robotics

field:

• Today, a huge corpus of software applications, which implement the en-

tire spectrum of robot functionality, algorithms, and control paradigms,

is available in robotic research laboratories and potentially could be

reused in many different applications. Typically, their interoperability

or their extensions towards novel applications require high efforts. Any

company that aims at developing professional software for complex

robotic systems has to make an initial investment in refactoring and

harmonizing existing open source robotics libraries that implement the

robot functionalities offered by the SPL. This phase is typically called

software development for reuse.

• Typically, robotic systems integrators are not software engineers and do

not master advanced software development techniques adequately. For

this reason, the proposed development process exploits the Model-Driven

Engineering (MDE) [7] approach. According to the MDE approach,

robotic system integrators use domain-specific languages to build models

that capture the structure, behavior, and relevant properties of their

software systems. A new application is developed by reusing these

models, customizing them according to specific application requirements,
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and semi-automatically transforming models and even generating source

code using transformation engines and generators. This phase is typically

called software development with reuse.

This chapter aims to illustrate the whole software development process

that has been defined for developing flexible and reusable component-based

robotics product lines.

3.1 The development process

The reuse-oriented development process that has been defined and applied

during the BRICS project is made of three phases, which are depicted in

figure 3.1. The first two phases, namely Capabilities Building and System

Building, are intended to produce software and models for reuse, while the

remaining phase, namely System Deployment, supports the development of

software with reuse.

Each box represents stage, which receives as input and produces as output

one or more models and/or software libraries. The stages (except Algorithms

development) are described in details in the following sections while the

models will be introduced in the chapter 4.

Vertical dashed lines divide the figure in the three phases of the develop-

ment process, while horizontal dashed lines separates the figure in three parts

that correspond to different roles, namely the Software Engineering Expert,

the Robotics Expert and the System Integrator.

• The Robotics Expert designs robotics algorithms, which are imple-

mented as Class Libraries, and represents the functional variability of

the robotic product line by means of a Feature Model.

• The Software Engineering Expert designs the Class Libraries by

refactoring the Legacy Code, represents the architectural variability in

the software product line with a Template System Model and maps func-

tional variability to architectural variability with a Resolution Model.
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Figure 3.1: The development process
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• The System Integrator, supported by a specific tool, selects the

desired functionalities for his application and generates the Configured

System Model.

3.2 Code refactoring

Code refactoring is the process of changing a software system in such a way

that it does not alter the external behavior of the code yet improves its

internal structure [28]. It occurs at two complementary levels:

• Syntactical refactoring is a behavior preserving transformation that,

through the adoption of good design principles (abstraction, information

hiding, polymorphism, etc.) aims at making software artifacts modular,

reusable, open.

• Semantic refactoring is a domain-driven transformation that, through a

careful analysis of the application domain (commonality/variability and

stability analysis), enhances software artifacts flexibility, adaptability,

and portability.

Software refactoring brings many advantages not immediately but in a

long time. The initial cost in terms of time and effort spent for rewriting the

code is balanced by the time gained in future. This gain is due to a code more

readable, more reusable and more maintainable. The result of a refactoring

process is a library of classes that are software framework independent, are

organized in a hierarchy of abstraction levels, provide harmonized interfaces

(API), and implement a variety of algorithms.

The objective of this stage of the development process is the definition of a

set of class libraries that can be easily encapsulated into software components,

which provide the properties described in the next subsection.

3.2.1 Refactoring towards components

“A software component is a unit of composition with contractually

specified interfaces and explicit context dependencies only. A
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software component can be deployed independently and is subject

to composition by third parties.” [29]

Software components come with well-defined component specifications,

which are abstractions from the details (data structures and operations) of

their (possibly many) implementations. A component specification explicitly

declares which functionalities (provided interfaces) are offered to its clients,

the public obligations (contracts) with its clients in the form of various kinds

of constraints (e.g. pre-conditions, post-conditions, invariants) on how to

access the functionalities, and the dependencies (required interfaces) to the

functionalities that are delegated to other components.

A component implementation, on the other hand, defines how the com-

ponent supports those features and obligations in terms of a collaborative

structure of realizing objects (class instances) and algorithms implementing

the functionalities declared in the component specification.

Separating the specification of components from their implementation

is desirable for achieving modular, interoperable, and extensible software

and allows independent evolution of client and provider components. If

client code depends only on the interfaces to a component and not on the

component’s implementation, a different implementation can be substituted

without affecting client code. If a coherent set of required interfaces can be

defined that specify the most frequently used robot services and capabilities,

and if robotics applications are designed around those interfaces, then every

component implementing compatible provided interfaces has the potentiality

to be reused in those applications.

The various implementations of a component may differ in functional

characteristics (i.e. different algorithms for motion planning), non-functional

properties (i.e. performance, maintainability, documentation quality, relia-

bility), realizing technology (e.g. the description of the geometric space may

be stored in a relational database or as XML files) and even programming

language (if components are build on a middleware or multi-language run-time

infrastructure).
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Despite of these differences, components that implement the same in-

terfaces and offer similar functionalities are typically implemented around

common entities and mechanisms, which are core aspects of the provided

functionalities and can be represented as stable data structures and opera-

tions. In contrast, those aspects of a component implementation that are

more likely to be affected by the evolution of the application domain represent

its variation points.

Component frameworks enable a clear separation between stable and

variable aspects of a component implementation. A component framework is

a skeleton that can be specialized to produce custom components. As such it

represents a family of component implementations, which can be derived from

its design and built on its data structures and operations without changing

them.

Components frameworks can be customized at design time, when the

software developer implements specific variants (e.g. algorithms) for each

variation point, or at run time, when one of several alternative variants is

selected according to current execution context.

In order to transform open source libraries in a set of classes that can be

easily wrapped into software components that provides the features described

above, a refactoring process, which consist of a set of well-known architecture

refactoring patterns have to be applied. These patterns provide concrete

guidelines to restructure the architecture of software systems.

Refactoring patterns regards the redistribution of the responsibilities

among the classes of a software library, the harmonization of the common

data structures and to reduction of the coupling degree. Some of them are

mostly related to the definition of components interfaces (e.g. Move Behavior

Close to Data or Split up God Class), while other are mostly related to

components implementation (e.g. Transform Conditionals into Registration

or Eliminate Navigation Code). More details about the refactoring process

and the refactoring patterns are described in the chapter 5.
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3.3 Product line design

The Product Line Design is the process of designing reusable component

frameworks (see subsection 3.3.1), which encapsulate the classes produced by

the algorithms development and the code refactoring phases, and Software

Product Lines architectures, which are built by assembling the designed

components (see subsection 3.3.2). In this stage the Software Engineering

Expert has to take in account the variability and use software engineering

techniques for designing artifacts that can be easily adapted for satisfying

new requirements.

3.3.1 Component design

Section 3.2 and [27] have defined a set of architectural principles for the design

of Component Frameworks, which specifies two variability mechanisms that

are common to most of the component models.

• Separation of a component interface form its implementation and the

consequent possibility to replace the implementation without the need

to modify the interface.

• Definition of component properties and the possibility to set their values

at deployment-time

These principles can be described by means of an Abstract Component

Meta-Model, which provides the rules for designing components that are

software framework independent and provides the variability mechanisms

described above. The Abstract Component Meta-Model defines the following

architectural elements:

• System: is the main entity of the Abstract Component Meta-Model

and is a composition of component frameworks, whose interfaces are

connected by means of Connections.

• Component Framework: is a software package that encapsulates and

provides a set of functionalities and relies on another set of functionali-

ties provided by other components (in the next pages of this document
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the Component Framework is typically abbreviated as Component). All

these functionalities are provided and accessed by means of the compo-

nent Interface. Each Component has a reference to an Implementation,

which is the executable or the dynamic library that implements the

component provided interfaces. A Component can be customized by

selecting different implementations that conform to its interfaces.

• Interface: explicitly defines (in terms of data types and contract) how a

component provides (provided interface) or requires (required interface)

a service or a data-flow.

• Property: is a mechanism that allows the Component configuration.

A property provides an interface for setting the value of a parameter

defined in the component implementation (e.g. component period or

algorithm parameters).

• Connection: defines the connection between a Provided Interface and a

Required Interface. It also specifies the communication policy.

3.3.2 Product line architecture design

Several components can be assembled to build applications. A family of

similar applications that are built reusing a set of software components

and share the same architecture is called a Software Product Line. The

product line architecture specifies the structural commonalities among the

applications (stable parts and variation points) and the variations reflected

in each application (variants). It prescribes how software components can be

assembled to derive individual products. For example, a variation point in a

typical robust navigation product line is the algorithm for obstacle avoidance.

Different algorithms (i.e. dynamic window approach [30] or vector field

histogram [31]) are implemented as distinct software components. The product

line architecture guarantees that these components are interchangeable.

In this stage the Software Engineering Expert defines the Template System

Model, which represents all the possible configurations of a software product

line and specifies:



32 3 A Reuse Oriented Development Process

• a set of components that can be used for building all the possible

applications of the family (some of them are mandatory, some others

are instead optional),

• a set of connections among components (some of them are stable, some

others are variable).

By selecting the optional components, their specific implementation, the

values of their configuration properties, and the variable connections, the

variability of the product line is resolved. In this way the Template System

Model is transformed in a model that describes the architecture of a specific

application, which belongs to the Software Product Line and provides a specific

set of functionalities. The new model is called Configured System Model. The

Configured System Model can be manually defined or can be automatically

generated starting from a selection of functionalities, as described in the next

sections.

3.4 Variability modeling

Building software systems according to the product line approach is economic

and efficient [6]. Most work is about integration, customization, and con-

figuration instead of creation. A system configuration is an arrangement of

components and associated options and settings that completely implements

a software product. Variants may exclude each others (e.g. the selection

of a component implementing an indoor navigation algorithm excludes the

choice of components providing GPS-based localization services) or one option

may make the integration of a second one a necessity (e.g. a component

implementing a visual odometry algorithm depends on a component that

supplies images of the environment). Hence, only a subset of all combinations

is the admissible configuration.

In order to model and symbolically represent the product line variation

points, their variants and the constraints between them, a formalism called

Feature Models was introduced in 1990 in the context of the Feature Oriented

Domain Analysis (FODA) [32]. While the Software Product Lines describe
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the architectural variability, Feature Models represent the variability in term

of functionalities.

This stage of development process aims to define Feature Models that

make explicit the functional variability that was implicitly defined during the

product line design. These models highlight both the variability provided

by each single component framework and the variability provided by their

composition in software product lines.

3.4.1 Feature models

A feature model is a hierarchical composition of features. A feature defines

a software property and represents an increment in program functionality.

Compose features, or in other words select a subset of all the features contained

in a feature model, corresponds to define a possible configuration of a software

that belongs to the application domain described by the model. This selection

is usually called instance.

On the base of the feature models, the FODA experts have defined a

graphical representation called feature diagram. The description of the Feature

Models reported below refers to the feature diagram depicted in figure 3.2

in order to exemplify the characteristics of feature models. The diagram

describes the functionality of a motion planning product line.

Path Planner

PRM RRT

Collision checker 3D environment 
model

Motion Planning

Figure 3.2: The Feature Diagram of a motion planning product line

Feature models are organized as a tree and the root feature, also called
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concept, defines the application domain. Features are represented by means

of white boxes, which contain the feature names, and are connected to the

children features by means of edges, which represent containment relationships.

Features can be discerned in two main categories:

• Mandatory . Mandatory features have to be present in every possible

configuration of a software that belongs to the domain described by

the model. They usually define the core of the software and represent

functionality or properties that are fundamental in the specific domain:

the commonalities. In the feature diagrams they are depicted by means

of a black circle on the top. In the example the Collision Checker

functionality is a mandatory feature.

• Optional . Optional features can be present but they are not manda-

tory. They represent functionality or properties that characterize a

specific configuration of the software: the variabilities. In the feature

diagrams they are depicted by means of a white circle on the top. In the

example the 3D environment model functionality is an optional feature,

which means that not all the motion planning applications provide it.

Features can be connected to their children features by means of two types

of containment relationships:

• Or containment. It is a relationship between the parent feature and

a set of children features. It means that from the children features at

least one has to be present in a possible configuration of the software.

This relationship is depicted by means of the black semi-circle that

connects the edges.

• Alternative containment (X-Or). It is a relationship between the

parent feature and a set of children features. It means that from the

children features only one can be present in a possible configuration

of the software. In the example it is represented by the containment

between the Path Planner feature and its children. This relationship is

depicted by means of the white semi-circle that connects the edges.
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The basic feature models also define two kinds of constraints between the

features: requires and excludes. These constraints allow the definition of a

subset of valid configurations. They are typically expressed in the form A

kind of constraint B, where A and B can be a simple feature or a composition

of features by means of logical operators (AND, OR, XOR, NOT).

• Requires constraint. It means that if a feature A is selected to be part

of a configuration, then also a feature B has to be selected. If A and/or

B represent logical rules the constraint imposes that if A is true, then

also B has to be true. To be noticed that for solving the logical rules

the value of a feature has to be considered true if the feature is selected.

• Excludes constraint. It means that if a feature A is selected to be part

of a configuration, then a feature B cannot be selected. If A and/or B

represent logical rules the constraint imposes that if A is true, then B

has to be false.

3.4.2 Cardinality-based feature models

The cardinality-based feature models propose to replace the properties optional

and mandatory and the containments or and alternative with a cardinality-

based annotation. In particular these ideas are proposed in two different

works:

• [33] proposes a feature-cardinality approach. The idea consists of

marking each feature with a lower bound and an upper bound. The

upper bound defines the maximum number of times that the feature

can be present in an instance.

• [34] proposes a containment-cardinality approach. The idea consists

of marking each containment with a lower bound and an upper bound.

The lower bound defines the minimum number of sub-features that have

to be present in an instance whereas the upper bound the maximum

number. According to this approach the containment relationships “or”

and “alternative” are respectively replaced by [1 . . . ∗] and [1 . . . 1].
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3.4.3 Extended feature models

The extended models propose to attach some information to the features

by means of attributes [33]. The purpose of the attributes is to allow a

more concise representation of feature models. In fact the idea is to use the

attributes for representing information that are important but not so relevant

to be represented as features. Attributes are defined by means of a name, a

type and a value.

3.5 Resolution modeling

Once the architecture of the product line has be defined and its functional

variability modeled, the next phase of the development process regards the

definition of how the Template System Model has to be modified for producing

a Configured System Model. This information is encoded in the Resolution

Model, which specifies how each variation point of the Template System Model

has to be resolved accordingly to the variant selected for the corresponding

variation point in the Feature Model.

The Resolution Model is based on the concepts of Required Element and

Transformation.

A Required Element reflects an architectural element that is defined in

the Template System Model and that has to be present in the Configured

System Model when the associated feature is selected. There are two types of

required elements: Required Components and Required Connections.

A Transformation is instead an action that modifies the architectural

elements of a Template System Model in order to configure them accordingly

to the selected features. According to the concept of Component Framework,

different kinds of transformations are available, which are described in the

following list.

• Implementation Transformation : this transformation allows the

software engineering expert to define which implementation will be used

for a certain component, i.e. which algorithm. The software engineer
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specifies a link to the desired component (defined in the Template

System Model) and the class that implements its interface.

• Connection Transformation : this transformation allows the soft-

ware engineering expert to define how the components will be connected.

The software engineer specifies a set of connections that have to be

created.

• Property Transformation : this transformation allows the software

engineering expert to define the value of a certain property. The software

engineer specifies a link to the desired property (defined in the Template

System Model) and the value he wants to assign to it.

The Software Engineering Expert can associate to each feature one or

more required elements and one or more transformations. A selection of a set

of features will hence result in the execution of a set of transformations and

the removal of all the elements of the product line model that are not defined

as required.

3.6 Product derivation

The last phase of development process regards the deployment of a specific

application belonging to the product line and can be achieved by resolving

the product line variability.

In this stage the System Integrator can select the set of variants (features),

which reflect the functional requirements of his application. This selection

should satisfy the explicit constraints, the containments cardinalities and the

selection of the mandatory features defined in the feature model. The tool

presented in the chapter 4 automatically checks the constraints satisfaction

and only successively generates the Configured System Model, which can be

then transformed in the deployment file of a specific software framework by

using a model-to-text transformation.





4
Variability Modeling and Resolution: Models

and tools

This chapter presents the meta-models and tools developed in order to support

the development process described in the chapter 3. These meta-models and

the tools are based on the Eclipse Modeling Framework (EMF) [25] and the

Graphical Modeling Framework (GMF) [35], which are two Eclipse projects

that allow the development of domain specific languages (DSLs) and graphical

editors for their visualization. Every DSL is built on a set of rules that are

defined by means of a formal meta-model, which describes the basic elements

and how they can be composed for writing a document conforms to the specific

DSL. In the Eclipse environment these meta-models are typically expressed

through the Ecore format [36], which is a small and simplified subset of UML

that will be used in this chapter.

4.1 A model driven approach

Some of the robotic software frameworks (see section 2.2.4 for an overview)

are distributed with a tool for design-time modeling and deployment-time

configuration of component-based systems. For example, the BRIDE toolchain

developed by the BRICS project for Orocos and ROS allows the user to

graphically design the system architecture and to generate a configuration

file (the Configured System Model) that is stored as XML file and can be

39



40 4 Variability Modeling and Resolution: Models and tools

transformed in a deployment file (by means of a Model-to-Text transformation).

The deployment file is then loaded by the runtime infrastructure of the software

framework, which instantiates, connects, configures, and activates the system

components.

Every time the robotic system configuration needs to be adapted (because

of different embodiment, situatedness, and intelligence requirements), the

user (i.e. the system integrator) has to modify the Configured System Model.

This means that the system integrator should be an expert in both robotics

and software engineering in order to understand how the variability in the

component system architecture needs to be resolved to accommodate the

variations in system requirements.

In order to overcome this issue two Eclipse plugins have been defined

(see the Feature Selector and the Resolution Engine in figure 4.1). These

tools help the robotics expert, the software engineering expert and

the system integrator in the execution of the phases of the development

process introduced in chapter 3.

Template
System 
Model

Feature 
Model

Resolution 
Model

Resolution 
Engine

Configured
System 
Model

Feature 
Selector

Figure 4.1: Modelling and Resolving Robotics Variability

As described in section 3.3, the Template System Model specifies the

set of components that can be used for building all the possible system

configurations (i.e. product line applications) and a set of stable connections
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between components. This model allows the definition of several kinds of

architectural variation points: (a) some of the components can be optional,

(b) new connections can be created, (c) components can be configured by

setting their implementation and the values of their properties.

The resolution of all the variation points of the Template System Model

produces the Configured System Model that describes a specific configuration

of the system. For this reason the Template System Model can be viewed as a

skeleton, which has to be customized in order to produce a specific Configured

System Model.

The Resolution Model specifies how a variation point of the Template

System Model has to be resolved accordingly to the variant selected for the

corresponding variation point in the Feature Model.

The Feature Selector is a tool, which allows the user to create instances of

feature models and verify that all the constraints are satisfied. The Resolution

Engine receives as input an instance of the Feature Model, a collection of

Template System Models and of Resolution Models (a pair for each of the

supported component frameworks, i.e. ROS, Orocos and SCA) and produces

as output a Configured System Model.

Figure 4.2 illustrates the models and meta-models defined for modeling

and resolving architecture variability. They are grouped into three orthogonal

layers, which are structured in levels of abstraction: M2 is the level of the

meta-models, while M1 is the level of the concrete Models. In some cases

these levels are further divided in two sub-levels.

• Product Line Modeling Layer

– M2 Abstract : the Abstract Component meta-model defines the

rules for modeling Component-Based product lines. It is Software-

Framework independent, and describes the architectural elements

for expressing variability in software architectures.

– M2 Concrete: the Concrete Component meta-models describe

the rules for modeling systems accordingly to a specific software

framework (e.g. ROS, Orocos or even SCA, which is not reported

in order to keep the figure as simple as possible).
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Figure 4.2: Meta-models representation

– M1 Design: the Template System Models are defined for a specific

foftware framework.

– M1 Deployment : the Configured System Models define a specific

system configuration (i.e. a specific application).

• Variability Modeling

– M2 : the Feature meta-model defines the rules for creating Feature

Models.

– M1 Design: the Feature Model describes the functional variability

of a product line in terms of variation points and variants.
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– M1 Deployment : an instance of a Feature Model resolves the

variability by defining a variant for each variation point.

• Variability Resolution

– M2 Abstract : the Resolution meta-model is independent from any

software framework and defines the basic concepts for variability

resolution.

– M2 Specific: these meta-models extend the Resolution Meta Model

with software framework-specific details.

– M1 Design: these models associate a model-to-model transforma-

tion to each feature defined in a Feature Model for transforming a

Template System Model into a Configured System Model.

– M1 Deployment : these models contain the sub-set of transforma-

tions defined in the M1 Design model, which correspond to the

selected variants of a Feature Model instance.

The above mentioned meta-models, models and tools are described in

details in the following sections.

4.2 Product line modeling

Level M2 defines the Abstract Component meta-model and three concrete

component meta-models for ROS, Orocos and SCA.

At M1 level, the concrete component meta-models are used to define the

Template System Models according to the ROS, Orocos or SCA component

model.

Table 4.1 summarizes how the variability mechanisms defined in the

Abstract Component meta-model are mapped to the specific mechanisms

provided by ROS, Orocos and SCA.

The next subsections present an UML representation for or each Concrete

meta-model and describe how the specific concepts map on the concepts

defined in the Abstract meta-model
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Abstract CMM ROS Orocos SCA

System System Package Composite

Component Node Task Context Component

Provided Int.
Publisher

Output Port Service
ServiceServer

Required Int.
Subscriber

Input Port Reference
ServiceClient

Connection

Publisher.target

Connection Wire

Topic
Subscriber.source

ServiceClient.srv
Service

ServiceServer.srv

Property Parameter Property Property

Table 4.1: The mapping between the concepts of the Abstract Component
meta-model and the concepts defined in the ROS, Orocos and SCA frameworks

4.2.1 The abstract component meta-model

The Abstract Component meta-model, which was already described in sub-

section 3.3.1, is depicted in figure 4.3.

It has to be noted that the abstract component model doesn’t make any

assumption on the architecture Component-and-Connector style (e.g. Data

Flow, Event-Based, Client-Server, etc.) [37, chap. 4].

A Template System Model defined by means of the Abstract Component

meta-model can be transformed in a new model defined by means of one

of the Concrete Component meta-models by executing a Model-To-Model

transformation. However this process cannot be completely automated, indeed

the Software Engineer has to manually specify a set of information that is

specific for the target Software Framework.

4.2.2 The ROS component meta-model

The Component meta-model of ROS is depicted in figure 4.41. A ROS System

is a graph of Nodes, Topics and Services.

1The ROS meta-model is a revised version of the Ecore model available at https:

//github.com/abubeck/bride/tree/master/bride_plugin_source/

https://github.com/abubeck/bride/tree/master/bride_plugin_source/
https://github.com/abubeck/bride/tree/master/bride_plugin_source/
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name : EString
implementation : EString

ComponentFramework

name : EString
RequiredInterface

name : EString
Connection

name : EString
System

name : EString
ProvidedInterface

0 … *

0 … *

0 … *
0 … *

name : EString
Property

0 … *11

Figure 4.3: The abstract component meta-model

A Node is the ROS equivalent of a component and is a stand-alone

executable. The reference to its implementation is defined by means of two

values: the package and the name. In ROS a package is a folder containing

the implementation of software libraries and nodes, which are characterized

by their name. The couple package-name has to be unique in the ROS file

system and identify the implementation of a node. Changing these values

allows us to change the node implementation. Nodes provide four kinds of

interfaces: Publishers, Subscribers, Service Servers and Service Client.

Publisher and Subscriber are interfaces (respectively provided and re-

quired) that can be used for implementing a communication based on the

Publish-Subscriber style. The connection between a publisher and a sub-

scriber is realized by means of Topics, which are named buses over which

nodes exchange data. They are typed by messages (ROS data structure). A

Node publishes on a Topic through a Publisher while subscribes to a Topic

through a Subscriber. Topics allow several publishers and several subscribers.

Service Server and Service Client are interfaces (respectively provided and

required) that can be used for implementing a communication based on the

Client-Server style. The connection between a Service Server and a Service

Client is realized by means of a Service, which defines the contract between
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0 … *
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Figure 4.4: The ROS component meta-model

the two entities in terms of two messages: the request and the response.

Finally Nodes can be configured through their Parameters, which are the

ROS equivalent of the Properties.

It has to be noted that the Connection defined in the Abstract meta-

model can be modeled in ROS by means of the triplet Publisher.target,

Topic, Subscriber.source or the triplet ServiceClient.service, Service, Service-

Server.service.
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4.2.3 The Orocos component meta-model

The Component meta-model of Orocos is depicted in figure 4.52.

name : EString
namespapce : EString
type : EString

TaskContext

name : EString
type : DataType
isEventPort : EBoolean

InputPort

name : EString
bufferSize : EInt
lockPolicy : LockPolicy
type : ConnectionPolicyType

ConnectionPolicy

name : EString
Package

name : EString
type : DataType

OutputPort

0 … *

0 … *

0 … *
0 … *

name : EString
type : DataType
value : EString

Property

0 … *11

Figure 4.5: The Orocos component meta-model

An Orocos Package is the equivalent of a System. It contains Task Contexts

and Connection Policies.

Orocos components are implemented as extension (inheritance) of the base

class TaskContext, have Properties and their own thread of execution, and can

be deployed as objects that share the same address space or as executables that

communicate using the CORBA middleware. Different implementations of

the same component are identified by means of two attributes: the namespace

and the type (class name).

Orocos components have Input Ports and Output Ports, which correspond

to required and provided interfaces respectively. They are used for data-flow

communication between connected components.

Components with real-time, deterministic and cyclic behavior get fixed

and cyclic time budgets for computation. Within a computation cycle they

read data from the Input Ports, must reach stable intermediate states, and

2The Orocos meta-model is a revised version of the Ecore model available at http:

//www.best-of-robotics.org/bride/rtt.html

http://www.best-of-robotics.org/bride/rtt.html
http://www.best-of-robotics.org/bride/rtt.html
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write results on the Output Ports.

Components with reactive behavior define Event Input Port, which trigger

the component computation upon arrival of new data.

A Connection Policy is the Orocos equivalent of a Connection. It allows

the developer to defines the policy of the data-flow communication by means

of two parameters: type and lockPolicy. The first one specifies whether the

data sent on a connection are stored in a buffer or not (i.e. each new data

replaces the old one). The second parameter defines the lock policy, which

can be lock free, locked or unsync.

4.2.4 The SCA component meta-model

A simplified version of the SCA Component meta-model is depicted in fig-

ure 4.63. This simplified model reports only the classes that are used in the

tools presented in this chapter, however the tools leverage on the original

SCA meta-model.

A SCA Composite is the equivalent of a System and is a graph of Compo-

nents and Wires.

A Component interface is defined in terms of Component Services and

Component References (aka Services and References), which are used for

implementing a communication based on the Client-Server style. Services

and References are typed by means of an Interface (e.g. a Java Interface),

which defines the signature of the methods provided or required respectively

by the Services and the References. Services and References can also be

associated with one or more Bindings, which allow different remote software

to communicate with them in different ways, i.e. the WSDL binding to

consume/expose web services, the JMS binding to receive/send Java Message

Service, the Java RMI binding for classical caller/provider interactions of

remote components.

A Component implementation is defined by means of a subclass of the

abstract class Implementation. An example of implementation available in

3The types NCName, AnyUri correspond to java.lang.String while QName to
java.xml.namespace.QName
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name : NCName
namespapce : EString
type : EString

Component

name : NCName
ComponentService

source : AnyUri
target : AnyUri

Wire

name : NCName
Composite

name : NCName
ComponentReference

0 … *

0 … *

0 … *
0 … *

name : NCName
value : EString
type : QName

PropertyValue

0 … *

11

Interface

interface : NCName
JavaInterface Implementation

class : NCName
JavaImplementation

1

1

1

Figure 4.6: The SCA component meta-model

SCA is the JavaImplementation, which is characterized by the class name

(including the package). In order to be valid the implementation has to

implement the interfaces associated to the component Services. Finally a

Component can be configured by means of its Property Values, which are the

equivalent of the properties.

A Wire is the SCA equivalent of a Connection, whose parameters source

and target correspond to the concatenation of component name and service or

reference name (e.g. component.name/service.name). Wires can be created

only between Services and References that refer to the same interface.
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4.3 Variability modeling

The feature meta-model depicted in figure 4.7 is designed according to the

feature models specification introduced in section 3.4 and defines the following

elements.

name : EString
root : EBoolean
required : EBoolean
lowerBound : int
upperBound : int

Feature

name : EString
type : EString
value : EString

Attribute

- EXCLUDES
- REQUIRES

<<enumeration>>
ConstraintType

name : EString
type : ConstraintType
rule: EString

Constraint
id : EString
descritpion : EString

Instance

FeatureModel

lowerBound : EInt
upperBound : EInt

ContainmentAssociation

0 … * 0 … *1

constraints instances

rootFeature

1

0 … *

1 … *

0 … *

selectedFeatures

attributes

subFeatures

container

Figure 4.7: The feature meta-model

The root entity FeatureModel is a class that encapsulates a tree of Features

and a set of Constraints. It also encapsulates a set of Instances that can be

saved and reused with the feature model.

• Feature. Features are defined by a name and by the boolean attribute

required, which is true if the feature is mandatory. Features also have

another boolean attribute (root, true only for the root feature) and

two integer attributes (lowerBound and upperBound), which represent

the feature cardinality [38]. Finally, features contain Attributes and

ContainmentAssociations.

• Attribute. Attributes can be used for representing information that are

important but not so relevant to be represented as features. They have

been introduced by [38].
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• ContainmentAssociation. The containment associations are used for

representing the containments of children features. They are defined

by two integers (lowerBound and upperBound) that allow the repre-

sentation of the standard containments (alternative and or) and of the

cardinality containments [34]. The containment associations contain

the features that are part of the containments.

• Constraint. Constraints are defined by a name and a rule. The rule is a

string of the form [Feature Type Feature], where Type can assume the

values requires or excludes.

• Instance. Instances represent a specific configuration of the model and

are defined by a name and a description. An instance contains references

to the set of selected features.

The meta-model described above is modeled in Ecore and is part of the

Eclipse Feature-Model Plugin described below, which provides a graphical

editor for the design of the Feature Models. The plugin is open source and

can be downloaded and installed from Github4.

4.3.1 The feature model editor

The feature model editor allows the creation of feature models that conforms

to the meta-model presented above. It is a graphical editor realized by means

of the Eclipse GMF tools. Figure 4.8 depicts the editor and shows how the

feature models are represented. The figure reports a feature model that

describes the possible configurations of a robust navigation product line.

The graphical representation is conforming to the standard convention of

the feature diagrams, except for the group containments. In particular the

different entities defined in the meta-model are represented in the following

way.

• Features are represented by means of a white box that contains the

name of the feature. The blue box represents the concept (root feature).

4http://robotics-unibg.github.com/VARP
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Figure 4.8: The Feature Model Editor

• Mandatory features are represented by means of a black circle on the

top whereas optional features by means of a white circle.

• Containment Associations are represented by means of a grey box that

shows the lower and the upper bound of the cardinality.

• Attributes are represented by means of a cyan box that contains the

name of the attribute.

The editor also provides the possibility of defining constraints by means

of the dialog window depicted in figure 4.9. It forces the user to create rules

that are syntactically correct, for instance it doesn’t allow him to insert two

logical operators without a feature between them. The constraint presented

in the example means that if the MarkerBased feature is selected then also a

sub-feature of Camera Pose and a sub-feature of Marker Detection Algorithm

have to be selected.

4.4 Variability resolution

The Template System Model and the Feature Model represent orthogonal

concerns, i.e. the structure of the component-based system and the hierarchical
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Figure 4.9: The Constraints Editor

organization of functional and non-functional aspects. For this reason, these

models do not have dependencies to each other, since they should evolve

independently.

The Resolution Model represents the bridge between the Template System

Model and the Feature Model. It defines a set of Resolution Elements, which

specifies the relationship between a feature defined in the Feature Model and

a set of architectural elements defined in the Template System Model.

Each Resolution Element contains one or more Required Elements and

Transformations (see subsection 3.6) and refers to a feature. The resolution

element is applied on the Template System Model only when the corresponding

feature is selected to be part of the instance that is created by the System

Integrator and is sent to the resolution engine.

The meta-model defines two types of required elements, RequiredCompo-

nent and RequiredConnection, and three types of transformations.

• Implementation Transformation : it specifies a link to a given
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component in the Template System Model and the implementation that

has to be associated to it.

• Property Transformation : it specifies a link to a property of a given

component and the value that has to be assigned to it.

• Connection Transformation : it specifies a set of new connections

that have to be created between pairs of components.

As describe in section 3.3 for the Component meta-model, also in the

case of the resolution meta-model two levels of abstraction have been defined:

the first defines software framework independent concepts (see the resolution

Model depicted in figure 4.10) while the second specifies three software

framework specific resolution meta-models.

ResolutionElement

name : EString
description : EString

AbstractTransformation

value : EString
TransfProperty

classNamespace : EString
className : EString

TransfImplementation TransfConnection

RequiredComponent RequiredConnection

0 … *

0 … *

0 … *

Resolution Model

1
0 … *

(from Feature MM)
Feature

Figure 4.10: The resolution meta-model

4.4.1 The ROS resolution meta-model

Figure 4.11 illustrates how the resolution meta-model presented in this section

has been specialized for ROS. Yellow classes, whose name starts with the
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Figure 4.11: The ROS resolution meta-model
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letters RM, are defined in the resolution meta-model (including the class

ResolutionModel). Green classes with the arrow on the top right corner are

entities defined in the ROS Component meta-model (see figure 4.4) and in

the Feature meta-model (see 4.7). Finally orange classes, whose name starts

with the word ROS, are part of the ROS resolution meta-model.

The classes ROSRequiredComponent and ROSRequiredConnection are

used to define ROS Nodes and Connections that are required in the Config-

ured System Model when the feature associated to the Resolution Element

is selected. ROS connections can be defined by means of the triplet Pub-

lisher.target, Topic, Subscriber.source or the triplet ServiceClient.service,

Service, ServiceServer.service. The class ROSTopicConnection models the

first triplet while the class ROSServiceConenction the second. They both

extend the abstract class ROSConnection.

The class ROSTransfImplementation specializes the abstract class RM-

TransfImplementation and has a pointer to the Node for which it is necessary

to set the implementation. The attribute classNamespace specifies the package

while className the node name.

The class ROSTransfProperty specializes the abstract class RMTransf-

Property and provides a pointer to the Parameter that has to be set.

Finally the class ROSTransfConnection specializes the abstract class

RMTransfConnection. The class provides information about the Connections

that have to be created. This information is provided as a collection of

ROSConnections.

4.4.2 The Orocos resolution meta-model

Figure 4.12 illustrates how the resolution meta-model has been specialized for

Orocos. Yellow classes, whose name starts with the letters RM, are defined in

the resolution meta-model (including the class ResolutionModel).Green classes

with the arrow on the top right corner are entities defined in the Orocos

Component meta-model (see figure 4.5) and in the Feature meta-model (see

4.7). Finally orange classes, whose name starts with the word RTT, are part

of the Orocos resolution meta-model.
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Figure 4.12: The Orocos resolution meta-model
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The classes RTTRequiredComponent and RTTRequiredConnection are

used to define Orocos Task Contexts and Connection Policies that are required

in the in the Configured System Model when the feature associated to the

Resolution Element is selected.

The class RTTTransfImplementation specializes the abstract class RM-

TransfImplementation and has a pointer to the Task Context for which it is

necessary to set the implementation. The classNamespace and className

attributes of the implementation are defined in the parent class.

The class RTTTransfProperty specializes the abstract class RMTransf-

Property and provides a pointer to the Property that has to be set.

Finally the class RTTTransfConnection specializes the abstract class

RMTransfConnection. The class provides information about the Connections

that have to be created. This information is provided as a collection of

RTTConnections, which specify their type (data or buffer), the Input Port,

the Output Port, the lock policy (lock free, locked or unsync) and possibly

the buffer size.

4.4.3 The SCA resolution meta-model

Figure 4.13 illustrates how the resolution meta-model has been specialized

for SCA. Yellow classes, whose name starts with the letters RM, are defined

in the resolution meta-model (including the class ResolutionModel).Green

classes with the arrow on the top right corner are entities defined in the SCA

Component meta-model (see figure 4.6) and in the Feature meta-model (see

4.7). Finally orange classes, whose name starts with the word SCA, are part

of the SCA resolution meta-model.

The classes SCARequiredComponent and SCARequiredConnection are used

to define SCA Components and Wires that are required in the Configured

System Model when the feature associated to the Resolution Element is

selected.

The class SCATransfImplementation specializes the abstract class RM-

TransfImplementation and has a pointer to the Component for which it is

necessary to set the implementation. In this case the attribute classNamespace
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Figure 4.13: The SCA resolution meta-model
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defines the package name while className the name of the class.

The class SCATransfProperty specializes the abstract class RMTransf-

Property and provides a pointer to the PropertyValue that has to be set.

Finally the class SCATransfConnection specializes the abstract class

RMTransfConnection. The class provides information about the Connections

that have to be created. This information is provided as a collection of

SCAWires, which specify the reference and the services that have to be

connected.

4.5 Product Derivation

In the last stage of the development process the Feature Selector editor allows

the System Integrator to create instances of a feature model and to generate

the corresponding Configured System Model. Creating an instance consist of

selecting the sub-set of features, from all the features that are defined in the

model, which satisfy the desired functionality for the application the has to

be deployed. This selection has to contain all the mandatory features, satisfy

the cardinality of the containments and respect all the constraints defined on

the model. Figure 4.14 depicts the Feature Selector. It is composed of two

parts: the visual representation of the model and the instance view.

The instance view shows the information about the existent instances

and offers a set of commands that allow the System Integrator to create,

remove and select instances. The third column provides information about

the instance that is currently showed in the visual representation.

Selected features are drawn in green. The System Integrator can select

a feature for being part of the instance by simply selecting it and using a

button in the toolbar or an entry of the Feature Models menu.

Once the System Integrator has completed the selection of the features,

the instance can be validated and the Configured System Model generated by

means of the resolution engine, which is described below.

The instance validation involves the verification of the fulfillment of the

following requirements:
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Figure 4.14: The Feature Selector

1. All the mandatory features have to be selected to be part of the instance.

2. All the cardinalities of the containments have to be satisfied, which

means that the number of the selected sub-features of a containment

has to be greater than or equal to the lower bound and less than or

equal to the upper bound.

3. All the explicit constraints have to be respected. The constraint checking

is done by using an external open source library called MVEL [39], which

resolves the two members of each constraint rule. After that, if the

constraint type is “require”, the constraint checker controls that both

the members are true. In case of an “exclude” constraint instead when

the first member is true the constraint checker controls that the second

is false.

4.5.1 The resolution engine

As already explained in section 4.1 the resolution engine receives as input a

set of Template System Models, a set of Resolution Models and an Instance

of the Feature Model. In order to produce as output the Configured System
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Model it performs the following actions:

1. It controls if a feature called Component Model is defined. This is a

key-feature that describes which Resolution Model has to be used for

deploying the System Configuration. No Required Elements should be

associated to this Feature because the resolution engine uses it only for

understanding which Resolution Model has to be used. In the case that

this feature is not present the process terminates with an error. On

the contrary the resolution engine controls that the Template System

Model and the Resolution Model for the selected software framework

have been provided.

2. It creates a copy of the Template System Model. This copy is the first

versions of the Configured System Model and will be modified during

this process. An empty list of required components and an empty list

of required connections are instantiated.

3. It iterates all the Resolution Elements defined in the Resolution Model

and for each of them controls if the associated feature has been selected

for the Feature Model Instance. If the feature is not selected, then

the Resolution Element is discarded. In the opposite case the trans-

formations associated to the Resolution Element are executed and the

required components and connections are inserted respectively in the

required component list and the required connection list. The connec-

tions created by the Connection Transformations are inserted as well in

the list of the required connections. In the same way the components

pointed by the Implementation Transformations and the components

containing the properties pointed by the Property Transformations are

inserted into the required component list.

4. It removes from the Configured System Model all the components and

the connections that are not contained in the required component and

connection lists.

5. The Configured System Model customization is finished. The resolution
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engine validates the output model in order to ensure that all the rules

defined in the corresponding Component meta-model are satisfied.

At the end of this process the Configured System Model can be deployed

with the corresponding software framework.

It is important to note that the Resolution Model and the Resolution

Engine are designed in such a way that the transformations associated to the

Resolution Elements can be executed in any possible order, without the risk

that two transformations will produce conflicting effects. For example it is

not possible that a transformation tries to create a connection that involves

the port of a component that is not yet defined in the Configured System

Model or that will be removed during the last step. The same is true for a

transformation that tries to set an implementation or the value of a property.

4.6 Related works

This section introduces the related works regarding the Feature Models Plugins

and the variability resolution.

4.6.1 Feature models

Despite along the years Feature Models have gained popularity, only few

attempts of providing a set of tools, which support the design of these models,

can be found in literature. Moreover some of those are not open source. This

section provides a survey on the projects described in literature. It will focus

on the eclipse-based tools, because with respect to the standalone tolls they

can be more easily integrated with other tools. The goal of the survey was

founding an open source and eclipse-based Feature Model Plugin, providing

the following features.

• Conformity to the standard specification of the Feature Models that

was defined in literature for what regards the features, the containments

and the constraints (see subsections 3.4.1, 3.4.2 and 3.4.3).
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• The presence of a graphical tool, based on a formal model, which allows

the user to define Feature Models in form of Feature Diagrams in a

simple and user-friendly way.

• The presence, in the same graphical editor, of a functionality that

allows the user to select a set of features directly from the same feature

diagram defined previously and allows the verification of the constraints

fulfillment.

This section uses the term graphical editor for defining an editor that

allows the representation of the Feature Models in a form similar to the

feature diagrams depicted in figure 3.2.

The Eclipse Modeling Framework Technology project (EMFT)[40], which

aims to provide a set of new tools that extend or complement the Eclipse

Modeling Framework (EMF)[25], provides a Feature Model plugin called

EMF Feature Model [41]. This plugin is still in the incubation stage and it is

based on two meta-models. The first one describes the rules for modeling the

variability and designing Feature Models, whereas the second the rules for

creating instances of the Feature Models. The major drawback of this plugin is

the dependency to pure::variants [42] for providing a graphical representation

and the constraints evaluation. Pure::variants is a complete Eclipse plugin,

however its use has been avoided due to the commercial license. Indeed, it is

free available only in a limited version.

Another interesting plugin, which is still in development, was designed

at the university of Waterloo [43]. In contrast to the proposal of [41], this

plugin uses a single meta-model for representing both the Feature Model and

its configurations. They provide an XPath support for the definition of the

constraints and also a constraints evaluation engine. This plugin is completely

open source but it doesn’t provide a graphical editor.

The P&P Software GmbH and the ETH-Zurich developed an open source

Feature Model plugin called XFeature [44]. This plugin provides a graphical

editor, an XPath constraints definition support and a constraints evaluation

engine. The editor is in general very complete but the editing of the Feature

Model is not really user friendly. For example a tools palette is not provided
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and the user has to edit the model by continuously using the context menu.

Furthermore the plugin allows the users to define an instance only by creating

a new feature diagram in which only the features defined in the Feature Model

can be inserted.

Finally one of the most complete and open source plugin found in literature

is FeatureIDE [45]. It provides a lot of functionalities, for example a graphical

editor which is completely compatible with the standard notation (it was the

only one found during the survey), a statistics view that collects information

about the number of features, the number of variants and the number of

possible configurations and last but not least the possibility of comparing the

current version with the last saved version in order to reason about how the

changes in the model will affect the product line. Despite this editor is very

complete, it has some drawbacks.

• Like the previous plugin it doesn’t provide a tools palette for editing

the model.

• It provides a tree representation for the selection of the features that

are part of an instance. However it doesn’t allow the users to do this

operation by using the standard feature diagram representation, which

is more intuitive.

• It doesn’t explicit allow the definition of the exclude constraint (the

workaround is defining “A excludes B” in the form “not (A and B)”).

This survey highlighted that no one of the plugins fulfills the three require-

ments defined above. In particular, for what regards the third point, most of

the available plugins allow the selection of a configuration only by using a

tree-view of the model or by recreating a new feature diagram in which the

user has to insert some of the features defined in the Feature Model. In order

to overcome the limitations of the available tools, the meta-model and the

plugin described in this chapter have been developed.
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4.6.2 Variability resolution

The Common Variability Language (CVL)[46] is “a domain independent

language for specifying and resolving variability”, which has been proposed

as OMG standard. The CVL approach is based on three models: (a) the

Base Model, which describes a software product line (SPL) in terms of

architectural elements and can be written in any MOF compliant language;

(b) the Variability Model, which models the variability of the SPL and defines

how the Base Model has to be modified according to the selected variants

(it is written in CVL); (c) the Resolution Model, which is an assignment of

values to the variants defined in the Variability Model.

The Variability Model is a tree made of VSpec elements. Four kinds

of VSpecs are defined: Choice, Variable, VClassifier and Composite VSpec.

Choice is the analog of feature and during the resolution can assume two values:

selected or not selected. Variable is a VSpec whose resolution requires a value

for its specific type (e.g. int). VClassifier is a VSpec that can be instantiated

more times. Finally Composite VSpec allows the hierarchical composition of

VSpec. A Variability Model made only of Choices is semantically equivalent

to a Feature Model.

The Variability Model associates Variation points to VSpecs. A Variation

Point defines how the Base Model has to be modified according to the value

that is assigned to the corresponding VSpec during the variability resolution.

Several variation points are available, which allow any possible modification

on the Base Model. In particular the derivation of Composite VSpec allows

the resolution of several variation points by assigning a value to only one

VSpec (i.e. it is more or less the equivalent of what it is possible to do with the

approach presented in this thesis by assigning more than one transformation

to a single Resolution Element).

CVL differs from the approach described in this thesis in several points.

(a) They defined a new language (CVL) for modeling the variability while

the approach described in chapter 3 uses the well-known Feature Diagram

representation. (b) While CVL uses a unique model for modeling variability

and transformations in this thesis the information is separated in two different
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models (the Feature Model and the Resolution Model). In this way the same

Feature Model can be used for specifying different Resolution Models and the

Feature Model Plugin can be used independently from the transformations

(e.g. for documenting the variability of a system). (c) Unlike CVL, which has

the goal to be as general as possible, the approach here presented is expressly

designed for component-based software frameworks that offer the variability

mechanisms described in section 4.2. For this reason the transformations that

can be applied on the Template System Model leverage on those mechanisms

and only allow the modification of specific architectural elements (component

implementations, properties and connections). (d) The Template System

Model contains all the possible components that can be used in all the

possible system configurations. For this reason components are never added

during the variability resolution. This characteristic of the System Template

Model allows us to execute transformations in any possible order. The

Feature Models constraints (both explicit and containment constraints) and

the Required Elements ensure that the transformation will not produce

conflicting effects. (e) The Variability Model here proposed is completely

orthogonal to the Template System Model and allows the association of highly

complex transformations to a single feature. A feature doesn’t have a one

to one relationship with specific element of the Template System Model.

Differently, in all the examples reported in [46] there is an implicit one-to-one

relationship between VSpecs and architectural elements defined in the Base

Model.

Lee at al. [47] propose an approach based on a feature oriented product

line engineering for the development of reusable service-based systems. In the

first step of their approach the feature oriented domain analysis is used for

identifying candidate reusable services, dependency among these services and

variation points for runtime binding. In a second phase, called service analysis,

the identified services are then distinguished in two categories: molecular

and orchestrating services. The first group provides computational services

that are reusable among several products. The second group instead provides

behavioral services, which are typically product-specific.

The proposed approach differs from the one proposed in this thesis in two
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points. First of all [47] uses Feature Models for the domain analysis while the

approach here described uses Feature Models also for the automatic system

configuration deployment. Furthermore, [47] applies only to service oriented

architectures, while the approach documented in this thesis can be adopted

for data-flow (e.g. Orocos) and publish-subscriber (e.g. ROS) styles.

Cirilo at al. have defined a model-based approach for variability resolution

similar to the one proposed in this thesis. In [48] they apply this approach

to multi-agent systems while in [49] the same approach is applied to OSGi

and Spring component based systems. The approach is based on three

models: (a) an Architecture Model, which defines a visual representation

of the implementation elements (classes, aspects, bundles, beans); (b) a

Feature Model, which describes the variability of the system architecture; (c)

a Configuration Model, which defines the mapping between the features and

the implementation elements.

The approach proposed in this thesis differs from the Cirillo’s approach in

several points. (a) The architectural elements defined in [48] vary from classes

to code fragments while in this thesis the approach models more abstract

elements such as components, interfaces and connections. (b) In [49] also

OSGi and Spring components are modeled as architectural elements. However,

despite bundles and beans define dependencies, the concept of connection is

not explicitly defined like in the Abstract Component Model here described,

but it is only implicitly implemented in the code. For this reason it is not

possible to change the connections between components in the same way it

is described in chapter 3. (c) As well as [47], Cirillo’s approach applies only

to service oriented architecture and is not usable with the other architecture

styles, which are widely spread in the Robotics domain.
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Refactoring

Today, a huge corpus of software applications, which implement the entire

spectrum of robot functionality, algorithms, and control paradigms, is avail-

able in robotic research laboratories and potentially could be reused in many

different applications. For various reasons (e.g. they defines different in-

terfaces, they use different data structures), the interoperability between

different implementations or their extensions towards novel applications is

limited or would require high efforts.

This chapter introduces the concept of refactoring and presents a set of

guidelines that describe how to refactor existing software libraries in order to

facilitate their encapsulation in reusable components, which can be then used

for building Robotics Product Lines as described in the chapter 3.

Moreover this chapter illustrates, by means of a case study, how the theo-

retical guidelines have been applied for analyzing open source implementations

of best practice libraries for motion planning and refactoring one of them

(CoPP [50]).

5.1 Code Refactoring

As introduced in section 3.2, the refactoring is the process of changing a

software system in order to improve its internal structure without changing

its external behavior [28].

69
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The refactoring process implies removing of duplicate code, simplification

of too complex logic flows and improving of code readability. Typically the

process evolves by following little and simple steps during which the code is

modified. In order to reduce the probability of introducing new bugs after

each step the refactored code is tested.

In the book [51], Joshua Kerievsky explained by means of four motivations

why the refactoring process could be useful.

1. Make it easier to add new code. When we need to add a new functionality

to our software we can operate in two different ways. The first consists in

doing it without considering how this new feature fits with the existing

design. The second possibility instead consists in modifying the existing

design in order to facilitate the integration of new functionalities. The

first choice is good when we have little time. Instead, if we have enough

time and (more important) if we think that we will have to introduce

new features also in the future, then the second choice is definitely

better.

2. Improve the design of existing code. Iterative executions of refactoring

process make easier to remove what Fowler calls ”Bad smells” and then

to improve the code design. Bad smells are certain structures in the

code that suggest the possibility of refactoring. In their books Fowler

and Kerievsky describe and explain how to remove these smells.

3. Gain a better understanding of code. Sometimes when we analyze code

can be very hard to understand how it works. In this case add comments

may not be enough for those who will have to modify the code in future.

They may still not understand it. The best solution is rewriting the code

and commenting it. For example a good practice consists in choosing

explicative names for variables and methods. Ideally the name of a

method should explain which functionality it realizes. Another good

solution instead consists in dividing a long method into shorter methods.

About the readability of code Fowler said: “Any fool can write code

that a computer can understand. Good programmers write code that

humans can understand”.
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4. Make coding less annoying. Refactoring not only makes code more

readable but also can make it less annoying to work with. In this way

it is simpler and quickly modify the code. For example, when a class

has too many responsibilities, every time we need to modify the code or

integrate new functionalities, we have to deal with this complex class.

As result we spend more time than necessary in order to complete our

work. In this case it is convenient rewriting the code and dividing the

complex class into simpler classes. This operation will allow a significant

saving in terms of time during future works on the code.

5.1.1 The refactoring process

The goal of the refactoring stage, which was described in section 3.2, is

transforming different implementations of the same algorithm specification

in a software library that is Software Framework independent and provides

harmonized interfaces and data structures. The refactoring process, which

has to be applied in order to achieve this goal, is made of three steps.

1. Domain analysis. Domain analysis concerns the task of getting inside

into the problem domain. This step consists in an exhaustive research

of the best practice algorithm implementations, which were developed

in the interested domain. These algorithms are then deeply analyzed in

order to identify their commonalities and their differences.

2. Harmonization. Harmonization concerns the definition of the architec-

ture of a software library, which allows the integration of the imple-

mentations considered in the previous point. This step defines: (a) the

harmonized interfaces, (b) the stable data structures and operations,

(c) the variation points. Typically this architecture can be represented

through a UML class diagram, where stable data structures are iden-

tified by means of concrete classes and variation points by means of

abstract classes. Variation points offer basic operations (e.g. path plan-

ning functionality) that are implemented in a specific way by different

variants (e.g. probabilistic roadmap or rapidly-exploring random trees).
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Stable data structures instead implement concepts that are hardly going

to change over the time. During this stage the designer typically apply

a set of refactoring patterns, which are described in section 5.2.

3. Integration. Integration concerns the development of the architecture

designed in the previous step. During this step the code of the considered

implementations is partially rewritten in order to fit with the common

data structures and operations. Each different implementation of an

algorithm is encapsulated in a specific variant that implement a variation

point. In order to check that the external behavior is unchanged the

code is then tested.

Figure 5.1 depicts the refactoring process that transforms a set of algo-

rithms implementations adhering to the same specification into a harmonized

software library.

Harmonized
Software Library

Algorithm
Specification

Algorithm
Implementation

Algorithm
Specification

  
 variable

stable

1

*

1

1

Refactoring

Figure 5.1: The Refactoring process

The process can be illustrated through the following simple example, which

will be deeply analyzed in the case study sections. At the state of the art

many path planning algorithms are available, for example the probabilistic

roadmaps and the rapidly-exploring random trees techniques. By analyzing



5.2 Refactoring patterns 73

their implementations some commonalities can be identified: they define

the concept of path and a method (called pathPlanning) that computes an

optimal path from an initial configuration to a final one. The functionality

provided by this method is defined in the specification of each path planning

class hierarchy.

In this case the domain analysis (first step of the refactoring process) iden-

tifies the commonality between the two algorithms, which is the path concept,

and the differences, that are the two implementations of the pathPlanning

method.

The second step (harmonization) defines the software architecture. In

this case the stable part is represented by the path (data structure) and the

variation point by the interface of the pathPlanning method. The variants

are instead represented by the different implementations of this method.

Finally the integration stage releases the working version of the harmonized

software library.

A developer may use it by choosing one of the available variants or by

adding a new one. In fact, in order to develop a new algorithm the software

library can be easily extended by implementing a new variant, or rather a

new implementation of the pathPlanning interface. Hence the developers may

reuse the stable parts of the software library and focus their effort on the

development of the new variants.

5.2 Refactoring patterns

Refactoring patterns have been documented during the last years in several

Software Engineering books, which describe them and explain how they can be

applied for improving the design of existing code (see for example [51, 28, 52]).

This section briefly introduce some of the patterns that have been applied

during the refactoring of the motion planning and robust navigation libraries

(see respectively case studies in section 5.3 and section 6.3), leaving to the

reader the possibility of deepening and applying them.
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5.2.1 Responsibilities redistribution

The refactoring patterns Move Behavior Close to Data, Eliminate Navigation

Code and Split up God Classes [52, Chapter 9] aim to redistribute the respon-

sibilities among classes and in particular to eliminate pure Data Containers

and God Classes.

Data Containers are classes that are simple data structures and have

almost no identifiable responsibilities. Use to many data containers makes

complex the code navigation and typically results in clients that have to

navigate chain of intermediates for reaching the indirect provider (i.e. the

intermediate(s) and the indirect provider are unnecessarily coupled).

God Classes are on the contrary classes that assume too many responsibil-

ities. Typically they are never instantiated, contain only static methods and

their data structure and behavior have class scope. They represent a complete

application. For this reason they are hard to understand and maintain.

Sometimes God Classes and Data Containers happen together, where the

God Class is the core of the application and uses Data Containers as pure

data structures.

Move Behavior Close to Data

Move Behavior Close to Data aims to resolve the problem of the pure data

containers. It suggests to extend the data containers, which defines data

structures, by assigning them the responsibilities of creating, initializing,

updating, transforming and elaborating encapsulated data (responsibilities

that were previously assigned to the intermediates and the indirect client).

Thanks to this pattern the data containers become service providers with

well defined responsibilities, avoiding different clients to implement the same

operations (i.e. reduction of the duplicated code).

Split up God Class

Split up God Class aims to remove god classes from a software library. All

the responsibilities concentrated in a god class are redistributed to the classes

that collaborate with it or to new classes appositely defined. Typically some
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of the classes that receive new responsibilities are pure data containers. For

this reason this pattern can be applied together with Move Behavior Close to

Data, in order to transform data container in concrete objects.

Thank to this pattern a procedural design can be transformed in an object

oriented design and the monolithic class implementing the entire application

can be split in a set of classes that provide well-defined responsibilities. As

a consequence the ex god class is more stable and easier to understand and

maintain.

Eliminate Navigation Code

Eliminate Navigation Code [52, Chapter 10] aims to reduce the impact of

changes in the code of the service provider by shifting the responsibilities

down a chain of connected classes.

This pattern is applied iteratively along the chain of indirect clients.

Starting from the last indirect client, at each step the methods that operate

on the data are moved to the container that provides the data itself.

Thanks to this pattern the chains of dependencies between classes can be

eliminated. As a result the impact of changes operated on the classes at the

lowest level are reduced.

5.2.2 Transform Conditionals into Registration

Another bad smell in the code, which increases the coupling level between the

provider of a service and its clients, is the presence of long case statements,

which make the code much more fragile. These case statements are typically

used for performing a service in a different way according to the attributes of

an object that is tested during the condition checking. The case statement is

implemented in the client code, which delegates the service execution to a

different service provider according to the result of the condition checking.

The pattern Transform Conditionals into Registration addresses these

situations in which the client is responsible for starting up an external service.

The pattern suggests introducing a registration mechanism to which each

service provider is responsible for registering itself. The provider clients are
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then transformed to query the registration repository instead of performing

conditionals.

Thanks to this pattern the client become more flexible and it is not

anymore hard-coupled to the existing service providers, which can be added

and removed dynamically without modifying the client code.

5.2.3 Family of algorithms

When a set of algorithm implementations conform to the same specification

and differs in the behavior (as described in the example in the subsection

5.1.1), the pattern Strategy [53] can be used for reducing the coupling between

the client of the algorithm and its specific implementation. Strategy defines a

family of algorithms, encapsulates each one and makes them interchangeable.

This pattern defines an abstract class called Strategy (variation point),

which implements the concepts that are common to all the algorithm imple-

mentations and provides a common interface for the algorithm invocation

and configuration. The subclasses (variants) of the Strategy class represent

instead the different algorithm implementations and extend the common

interface for providing specific behaviors.

Thanks to this pattern the algorithm implementations can be modified

without having to adapt the client code. Moreover new variants can be

defined by reusing the commonalities provided by the Strategy class and

implementing only the specific behavior.

5.2.4 Inversion of Control

Another aspect that makes a software library more reusable is provide a

framework that defines the skeleton of an application and let the users

customize its behavior by means of plugins. In this way the users don’t have

to define the application core and can focus only on the development of new

plugins by specializing well defined interfaces provided with the library. In

other word the software library defines a set of well defined variation points

and leaves to the user the freedom of developing new variants or using the

variants provided with the library.
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For example a path planning library can provide a framework that defines

a variation point for the collision checking functionality. The users of this

library have the possibility of customizing the framework by defining a new

collision checker and bounding it to the variation point.

This pattern moves the application control from the code written by the

user of the library to the library itself, more specifically to the provided

framework. For this reason it is called Inversion of Control or Dependency

Injection [54].

In addition to the definition of the variation points the library should

define a mechanism for bounding the variation point to the variants. For

this porpoise the pattern defines three possible mechanisms that Fowler calls

Constructor Injection, Setter Injection and Interface Injection.

5.2.5 Magic Numbers

A frequent bad smell, which makes the code less readable and maintainable,

is the presence of the so called magic numbers. They are numbers with a

special meaning that are encoded in the source code instead of using specific

constants, for example the proportional gain of a controller or the number of

the joints of a manipulator. The more the same magic number is spread in

the code the more the problem is serious. Change the value of this number

indeed means changing its value in every point in which it is used in the code.

Fowler suggests eliminating this numbers by applying the refactoring

pattern Replace Magic Number with Symbolic Constant, whose title is self-

explicative.

Alternatively, in order to define a software library that can be easily

encapsulated in software components, it is a good practice to replace the

magic number, which allows the configuration of the code behavior (e.g. gain

parameters), with non-static variable and define for them a set of getter and

setter methods. In this way the library or part of it can be easily wrapped in a

component and these new variable mapped to a set of component properties.
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5.3 Case study - Domain analysis

This sections presents a case study regarding path planning problems with

a high number of degrees of freedom, as typically encountered in mobile

manipulation tasks. In this context, several classes of probabilistic, sample-

based planners have been developed, most notably variants of Probabilistic

Roadmaps (PRM) and Rapidly Exploring Random Trees (RRT), amongst

others (see [55] for a comprehensive overview). These algorithms typically

work in the configuration space (C-space) of the robot. Elements of the overall

planning tasks are listed below [56].

• Representation of robot’s configuration space.

• Representation of paths and trajectories.

• Kinematic or dynamic constraints.

• Sampling new points in the C-space.

• Measuring distances in the C-space.

• Interpolating between two points in C-space.

• Computation of forward or inverse kinematics.

• The global planner algorithm itself.

• Specification of start and goal conditions.

• Local planner for quickly connecting two configurations.

• Representation of the robot’s geometry and the environment in the

Cartesian 3D space.

• Collision checking.

• Updating path according to changing environments.

• Handling graph- or tree-like structures for roadmaps or discretization

of the C-space.
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In particular collision checking is known to play often a crucial role for

sample-based planners, taking up most of the processing time.

In order to better understand the domain, an exhaustive research of the

best practice open source libraries, which address many of the functionality

mentioned above, has been performed. The next subsection reports the results

of this survey while subsection 5.3.2 highlights the issues that make hard the

interoperability between these libraries.

5.3.1 Open source libraries

The Motion Strategy Library (MSL)[57] was developed by the research group

of Steven LaValle at the University of Illinois. The library includes support

for multiple planners (including variants of RRT, PRM and Forward Dynamic

Programming FDP), collision checkers (PQP) and visualization in multiple

formats. Originally deployed only under Linux, a Windows version was

published in 2008.

The Motion Planning Kit (MPK)[58] was developed by the research

group of Jean-Claude Latombe at Stanford University. It implements a

fast single-query bi-directional probabilistic roadmap path planner with lazy

collision-checking (SBL) and relies on PQP for collision detection.

The Motion Planning Kernel (MPK)[59] was first developed by Ian Gipson

at the Computational Robotics Lab at Simon Fraser University. It comes with

a full suite of collision detection algorithms (V-collide and SOLID amongst

others) and implements path planners for RRT and PRM.

Components for Path Planning (CoPP)[50] was developed by Morten

Strandberg at the Royal Institute of Technology (KTH) with the aim of a

clearly structured object-oriented planning framework. Several functionalities

such as samplers, metrics, local planners, interpolators, and collision checkers

(PQP, YAOBI) are explicitly distinguished with separate base classes. The

library includes planners for PRM, RRT and PCD and provides support for

visualization via Coin and VRML.

OpenRAVE [60] developed by Rosen Diankov is a framework that covers

the whole development cycle around manipulation and grasping, including
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support for different sensor inputs, controllers and physical simulation. Plu-

gins are meant to provide an easy way for users to add various custom

functionalities. OpenRAVE integrates to ROS and has interfaces to Octave,

Matlab and Python.

The Lydia Kavraki’s laboratory developed The Object-Oriented Program-

ming System for Motion Planning (OOPSMP)[61]. It includes a large variety

of motion planners and can handle kinodynamic constraints. Several general

purpose data structures and functionalities for the domain of motion planning

are provided.

Open Motion Planning Library (OMPL)[62] developed by Ioan Sucan

stands out from the other libraries in the way that it explicitly concentrates

on the core path planning algorithms. Other elements such as collision

checking, simulation or motion control are handled by integration into the

ROS framework. OMPL provides various planners including RRT, EST, SBL

and KPIECE, and an inverse kinematics solver (GAIK) based on Genetic

algorithms.

KineoWorks is the only framework mentioned here which is not available

as open source. Originally developed as Move3D [63] at LAAS, it was put into

a product by Kineo. It is meant to provide a component-based architecture

that supports easy integration into applications. However it is not free and

for this reason this section will not provide further information about it.

All of the libraries discussed above but KineoWorks are published as open

source or are free for non-commercial use. Most of them are under active

development, while only a few seem to be discontinued.

Notably all libraries above are written in C++. Some include scripting

support for other languages or interfaces to tools such as Octave or Matlab. All

of them offer some kind of 3D visualization, some also support for simulation

and physics engines; with the special note of OMPL that relies on the ROS

environment for all those aspects.
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5.3.2 Interoperability issues

Most of the libraries cannot be easily interchanged and it is rather difficult to

compare individual algorithms between libraries. One of the reasons is that

they rely on some base classes, which sometimes are very detailed or include

certain dependencies and that cannot easily be replaced or changed. Thus

it is difficult to plug one algorithm, including all relevant aspects, into some

other piece of software. In addition, many of the more internal aspects of

planning algorithms, such as samplers or metrics, may not be made explicit.

In order to exchange them, the algorithms’ source code would have to be

changed. The dependency of base classes on external frameworks may also

restrict the transfer of a library onto real robots possibly with embedded PCs

and limited resources. It should be noted that in particular the newer libraries

include several mechanisms and design aspects that aim at minimizing the

before-mentioned problems.

Nearly all libraries provide some kind of support for different implemen-

tations of functionalities, most commonly in the form of inheritance from a

base class. This holds true for the main planner classes, but for example also

collision checking engines are nearly always made explicit and interchangeable.

As an example, MSL is built around the classes Model (representing kine-

matic and dynamic systems), Geom (geometric objects for collision checking),

Problem (general class to represent aspects of a path planning problem),

Solver (base class for path planning algorithms), Scene, Render and GUI for

visualization. New functionality may be added by inheriting from these main

classes. In this specific library, metrics and interpolators for example may

be changed by overriding virtual functions in the Model class. OpenRAVE

and OOPSMP in addition provide the concepts of plugins, where different

kinds of functionalities may be attached from outside. Those plugins have to

inherit from base classes as well, but can then be loaded during runtime from

dynamic libraries.

In OpenRAVE a central class EnvironmentBase glues all parts together.

This is a container for all other elements, including physics and visualiza-

tion. Most elements refer back to this container, e.g. loading from XML,
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connecting robots with collision checkers, or drawing are handled via calls to

EnvironmentBase.

In OOPSMP the composition and configuration of planning problems is

done via customized XML files. A parser translates the XML elements into

calls to dynamic libraries. In this way OOPSMP can be flexibly configured

without touching any source code. On the other hand some kind of dedi-

cated plugin functionality is needed to extend it. Similar to OpenRave, one

container class CoreRobotData includes pointers to all components such as

workspace, state space and smoother, with these components inheriting from

CoreRobotData.

In contrast to the previous frameworks, OMPL is inherently integrated

into ROS. The environment representation for the collision detector can be

provided at runtime by an appropriate ROS node. The representation of the

robot is loaded from URDF files. When paths have been planned, they are

published to the ROS network. OMPL implements a number of abstract base

classes such as Planner, Path, or Goal.

A major step concerning interoperability has been made in the ROS project.

There a plenitude of standard interfaces for various aspects, from trajectories

to robot kinematics and environment modeling, have been introduced in a

data-centric way, without unnecessary functional dependencies. The libraries

OpenRAVE and OMPL can be used over those interfaces, increasing the

interoperability significantly.

The following tables provide an overview on how some of the key con-

cepts for motion planning tasks are implemented in the different software

libraries. These include data structures to represent Configuration (Table

5.1), Path (Table 5.2), C-Space, (Table 5.3), Robot Kinematics (Table 5.4),

and functionality such as Metric, Interpolator, Sampler (Table 5.5), Collision

Detection, and Environment Modeling (Table 5.6). Many of these concepts are

represented in semantically similar ways. However the remaining differences

constitute several of the major problems concerning interoperability between

libraries.
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Library Main class Notes

MSL MSLVector double array, includes size

MPKKernel Configuration vector <double>, includes calls to OpenGL

CoPP Config vector <double>

MPKKit mpkConfig vector <double>, includes various functions

OpenRave TPOINT vector <dReal>, includes, velocities and time

OOPSMP State t double array

OMPL State double array

Table 5.1: Classes for point in C-space

Library Main class Notes

MSL Planner list<MSLVector>, located directly in planner’s base class

MPKKernel PA Points vector<Configuration>, includes calls to OpenGL

CoPP Path list<Cinfigurations>, includes time

MPKKit sblPlanner list<mpkConfig>, includes various functions

OpenRave Trajectory vector<TPOINT>, vector<TSEGMENT>, includes elements for dy-
namic motion control

OOPSMP Path includes interfaces for time, splitting and more. Base class with
various implementations

OMPL Path points to a SpaceInformation, derived classes include array of
State

Table 5.2: Classes for path or trajectory

Library Main class Notes

MSL Problem,
Model

includes upper/lower limits, start and goal configuration. con-
trol inputs and system simulation

MPKKernel Universe,
RobotBase

includes upper/lower limits, start and goal configuration

CoPP DOF Properties stored in multiple places, where needed

MPKKit limits are implicitly in planner

OpenRave ConfigurationStateincludes limits and number of DoF

OOPSMP StateSpace includes bounding box and various other functions, many con-
crete implementation

OMPL SpaceInformation includes start and goal configurations, dimension,
StateDistanceEvaluator, StateValidityChecker

Table 5.3: Classes for C-space
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Library Main class Notes

MSL Model includes kinematic structure and control

MPKKernel RobotBase vector <LinkBase*>

CoPP KinematicNode vector <DOF_Properties>, limits are stored in Robot class as
well

MPKKit mpkBaseRobot includes pointer to a parent joint, spatial transforms, triangu-
lated link model, PQP and SoQT data

OpenRave KinBody vector vector<Joints> vector <Links>

OOPSMP StateSpace implicitly defined via StateSpace and related classes

OMPL based on ROS using URDF files

Table 5.4: Robot Kinematics data structures

Library Notes

MSL Model (and Problem) with virtual functions for Metric and Interpolator. Sam-
pling as virtual function ChooseState in each planner class

MPKKernel Sampler and metric as virtual functions in planner base classes. Interpolation
hard-coded in planner

CoPP classes Metric; Interpolator; ConfigSpaceSampler

MPKKit non-virtual functions in class mpkConfig for metrics and interpolating. Sampling
hard-coded in planner

OpenRAVE classes DistanceMetric; SampleFunction; four interpolation methods hard-
coded in Trajectory

OOPSMP distance function in StateSpace; classes PathGenerator; ValidStateSampler

OMPL classes StateDistanceEvaluator; StateSamplingCore; interpolation done in
planners

Table 5.5: Interfaces for Metrics; Interpolator; Sampler
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Library Notes

MSL Geom with derived class for PQP

MPKKernel CollisionDetectorBase. Universe has an array of Mesh which can model vari-
ous objects.

CoPP ObjectSet. Base class Geom stores a position, with inherited classes for triangles
and convex objects.

MPKKit mpkCollDistAlgo uses PQP or own collision detector

OpenRAVE CollisionCheckerBase. KinBody includes TRIMESH and GEOMPROPERTIES for
modelling triangle meshes

OOPSMP CollisionDetector. Workspace holds list of Part, support of polygons

OMPL Based on ROS with interfaces of CollisionSpace and various geometry mes-
sages

Table 5.6: Interfaces for Collision detector and environment modeling

5.4 Case study - Harmonization

The harmonization of a class library such as CoPP has required the redistri-

bution of responsibilities (i.e. functionalities) among the original classes, the

design of new classes and the definition of well defined provided and required

interfaces that make the functionalities available to the clients. In particular,

the refactoring process of the CoPP motion planning library consisted of the

application of the refactoring patterns introduced in the section 5.2.

The description of how the CoPP library has been refactored is organized

in two subsections:

• subsection 5.4.1 explains how functionalities and data structure have

been decomposed in a set of modules1;

• subsection 5.4.2 describes how one of these modules has been designed.

5.4.1 Modules identification

The first step consisted of analyzing the data structures used in the various

motion planning libraries (see subsection 5.3.2) in order to identify similar-

1In this chapter the term module is used for defining a set of classes that collaborate for
providing a set of services. It is not an equivalent of the terms component or component
framework used in the rest of the document.
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ities. As expected, nearly all the algorithms rely on the concept of robot

configuration, but the data structures used to represent them show subtle

differences. While an array, or vector, of double values is used in all the

cases, the differences concern additional information (e.g. time and flags, and

whether the number of dimensions is included or not). For some versions it is

trivial to convert between each other, while for others it is a problem due to

different kind of information stored.

The refactoring pattern Move Behavior Close to Data suggests introducing

data containers for harmonizing existing data structures and assigning them

operations to be executed on the encapsulated data.

The guidelines of this pattern have led us to the definition of the new

ConfigurationSpace module, which is depicted in figure 5.2 (modules are drawn

according to the UML component notation where lollipops represent provided

interfaces while sockets required interfaces). The ConfigurationSpace module

is in charge of maintaining the representation of the robot configuration space.

A Configuration is represented as a vector of n values, each one representing

a point in the robot’s configuration space. The ConfigurationSpace module

stores at least the following configurations:

• lowerConfig is the configuration that represents the lower bound of the

configuration space

• upperConfig is the configuration that represents the upper bound of the

configuration space

• currentConfig is a list of robot’s configurations at given instants of time.

Depending on the type of configuration space, additional data may be

required for example to represent rotational joints or a rigid body moving in

2D space, resulting in SE(2).

The ConfigurationSpace module offers services that were implemented as

separated class hierarchies in the original motion planning libraries, such as

the algorithms for configuration interpolating and for measuring distances

between pairs of configurations. The configuration pair may be provided by
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Figure 5.2: The system resulting from refactoring of motion planning library
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the client or may correspond to two configurations at different instants of

time. The following three provided interfaces have been defined:

• ConfigurationSetup

• ConfigurationInterpolating

• ConfigurationMetric

The ConfigurationSpace module does not implement any required interface.

Thus it has no dependency to other modules and can be reused independently

of other motion planning modules as building block for the implementation

of robot functionalities where robot’s configurations need to be represented,

such as motion control, navigation and manipulation.

The refactoring pattern Move Behavior Close to Data has been iteratively

applied to the original motion planning libraries. It has led to the identification

of two more modules that behave as data container with provided interfaces

only (see Fig. 5.2):

• The CartesianSpace module encapsulates the geometric representation

of the robot’s environment and implements interfaces for updating and

browsing it.

• The Graph module is a wrapper of external graph management li-

braries that implements standard interfaces for creating, updating and

processing data organized as graph structures.

Motion planning algorithms are often implemented by structuring the code

according to the functional decomposition approach, where most of the logic

of the functionality is provided by a single ”god class”, like MotionPlanner.

The Split up God Class pattern refactors a procedural god class into a number

of simple, more cohesive classes.

The iterative application of this pattern to the motion planning class

libraries has generated three modules: RobotKinematics, CollisionChecker,

and PathPlanner. The first iteration has produced the clear separation of

two core functionalities, i.e. collision checking and path planning. Most class
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libraries already offer distinct specialization hierarchies for the implementation

of collision checking and path planning algorithms, but their high level abstract

classes are incompatible and in some cases have a long list of methods with a

large number of parameters.

The CollisionChecker module maintains an internal representation of the

robot environment, which is an algorithm-specific approximation (e.g. using

bounding boxes) of the Cartesian space. This internal representation needs

to be updated when the robot’s Cartesian space gets modified, for example

when the robot or other objects change their position. For this purpose, this

module requires the SpaceBrowsing interface of the CartesianSpace module

and implements the SpaceUpdated event listener. The provided interface

CollisionChecking defines the operations that the path planner can invoke to

check and inspect collisions among objects in the robot’s environment.

The RobotKinematics module stores the robot’s kinematic model and

implements only provided interfaces for invoking the forward and inverse

kinematic transformations.

Finally, the PathPlanner module implements the algorithms that generate

a robot path as a sequence of collision-free configurations. The simplified

interaction between the seven modules in Fig. 5.2 consists of the following

sequence of steps: PathPlanner generates (samples) a new robot configuration,

updates ConfigurationSpace, gets the new robot position from the RobotKine-

matics module, updates CartesianSpace, checks if the new configuration is

collision free and, if this is the case, updates the Graph.

Thus, it is clear that the PathPlanner module uses and integrates the

services of the other modules to build a specific robot functionality and that

these modules can be reused as building blocks for the implementation of

other functionalities.

5.4.2 The Path Planner module

This subsection describes how the modules depicted in figure 5.2 have been

refactored. In particular it illustrates the PathPlanner module, whose class

diagram is depicted in figure 5.3. This module clearly separates stable data



90 5 Refactoring

+c
on

ne
ct

(in
 fr

om
 : 

C
on

fig
, i

n 
to

 : 
C

on
fig

) :
 P

at
h

Lo
ca
lP
la
nn
er

B
in
ar
yC
on
ne
ct
or

+g
et

P
at

h(
in

 s
ta

rt 
: C

on
fig

, i
n 

en
d 

: C
on

fig
) :

 P
at

h
+n

ex
tC

on
fig

(in
 c

ur
re

nt
C

on
fig

 : 
C

on
fig

) :
 C

on
fig

G
lo
ba
lP
la
nn
er

P
at
h

R
R
TP
la
nn
er

P
R
M
P
la
nn
er

P
C
D
P
la
nn
er

P
la
nn
er
M
od
ul
e

P
at
hL
eg

C
om

po
si
te
Le
g

C
on
fig
ur
at
io
n

+s
el

ec
tG

lo
ba

lP
la

nn
er

(in
 c

rit
er

ia
 : 

st
rin

g,
 in

 p
ar

am
 : 

ve
ct

or
<T

>)
+s

el
ec

tU
pd

at
er

(in
 c

rit
er

ia
 : 

st
rin

g,
 in

 p
ar

am
 : 

ve
ct

or
<T

>)
+s

el
ec

tL
oc

al
P

la
nn

er
(in

 c
rit

er
ia

 : 
st

rin
g,

 in
 p

ar
am

 : 
ve

ct
or

<T
>)

+s
el

ec
tS

am
pl

er
(in

 c
rit

er
ia

 : 
st

rin
g,

 in
 p

ar
am

 : 
ve

ct
or

<T
>)

«i
nt

er
fa

ce
»

P
la
nn
er
S
et
up

+g
et

P
at

h(
in

 s
ta

rt 
: C

on
fig

, i
n 

en
d 

: C
on

fig
) :

 P
at

h
+n

ex
tC

on
fig

(in
 c

ur
re

nt
C

on
fig

 : 
C

on
fig

) :
 C

on
fig

«i
nt

er
fa

ce
»P
at
hP
la
nn
in
g

+u
pd

at
eP

at
h(

)

P
at
hU
pd
at
er

E
la
st
ic
S
tr
ip
U
pd
at
er

S
ta
tic
U
pd
at
er

FA
D
P
R
M
U
pd
at
er

+g
et

S
am

pl
e(

) :
 C

on
fig

S
am
pl
er

A
dv
an
ce
dS
am
pl
er

U
ni
fo
rm
S
am
pl
er

+u
pd

at
eP

at
h(

)

«i
nt

er
fa

ce
»

P
at
hU
pd
at
in
g

1

1 1

1

1
1

1

*

*1

<<
us

e>
>

<<
us

e>
>

1
1

<<
us

e>
>

+i
ns

ta
nt

ia
te

()

Va
ri
an
tD
es
cr
ip
to
r

1 *

1

1

Figure 5.3: The Path Planner module
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structures (black classes), variation points (blue classes) and concrete variants

(red classes).

The classes used to represent a robot path are stable entities of the Path

Planner module. They have been structured according to the Composite

design pattern [53]. PathLeg is a sequence of Configuration objects. Taking

as example a mobile manipulator that navigates inside a building, a path

leg may correspond to the sequence of configurations of the mobile platform

from a place inside a room to a place close to the door. Another path leg

may then correspond to the sequence of configurations of the manipulator to

open the door. CompositeLeg is a composition of path legs. The Composite

design pattern allows the hierarchical composition of even more complex

paths, which can be browsed through a uniform interface implemented by the

Path abstract class.

Variation points and variants have been designed according to the Strategy

Pattern. The variation points are abstract classes that implement stable data

structures and operations that are common to a family of similar algorithms.

From the analysis of motion planning libraries four core variation points have

been identified: GlobalPlanner, LocalPlanner, Sampler, and PathUpdater.

The designed modules can be customized at design time, when the software

developer defines concrete subclasses (e.g. PRMPlanner, BinaryConnector,

UniformSampler, and ElasticStripUpdater) that implement specific algorithms

and represent possible variants of each variation point (Strategy pattern).

Another possibility is customizing the modules at run time, when one of

several alternative variants is selected according to current execution context.

For example, variants of a specific family of algorithms could be switched

through a graphical user interface in order to benchmark and compare their

performance during experiment sessions. Alternatively, the robot could select

the most effective algorithm autonomously according to situation awareness

(e.g. a fast path planner in open space environments and a powerful path

planner in cluttered environments).

Both situations require a module’s client (e.g. the GUI or the robot

controller) to switch among several variants. This is potentially implemented

as long methods consisting almost entirely of case statements, which make
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the code more difficult to maintain. As describe in the section 5.2, the

pattern Transform Conditionals into Registration suggests removing the case

statements by introducing a registration mechanism to which each variant

is responsible for registering itself. The module clients are then in charge of

querying the registration repository for retrieving references to the variants.

According to this pattern the class VariantDescriptor have been defined,

which encapsulates the information necessary for registering, querying, in-

stantiating and using each module variants. For each variation point (e.g.

GlobalPlanner) the class PlannerModule encapsulates a member variable that

points to the current selected variant.

Once the clients have customized the module by resolving its variation

points, they need to access its functionalities, which in most of the cases

are provided by the specific variant objects. For example, the GlobalPlan-

ner variation point represents the core logic of the PathPlanner module

and is available in several variants, each one implementing a specific al-

gorithm for global planning. The GlobalPlanner and its variants imple-

ment interface PathPlanning, which defines the fundamental operation Path

getPath(Configuration start, Configuration end).

The analysis of the motion planning libraries described in section 5.3 reveals

that clients of these libraries (e.g. the robot control application) typically

have direct access to the objects that implement planning algorithms. In

this case, direct access to variant objects would require navigating through

classes PlannerModule and VariationDescriptor in order to get a reference

to individual variant objects. This would violate encapsulation and would

couple clients and variant objects unnecessarily.

Pattern Eliminate Navigation Code suggests preventing these problems

by transforming object containers into service providers. This is the case of

PlannerModule, which maintains pointers to current variant objects. It imple-

ments interface PathPlanning and delegates the execution of its operations

to the current variant of the GlobalPlanner.

By applying the patterns Transform Conditionals into Registration and

Eliminate Navigation Code, two distinct provided interfaces for the Path-

Planner module have been defined. Interface PlannerSetup allows clients
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configuring the module by selecting specific variants for each variation point.

Interface PathPlanning allows clients accessing module’s functionality. It is

clear that different clients can access the two interfaces independently. For

example, the GUI (one client) can switch two variants of the same variation

point (e.g. LocalPlanner), which will be used to compute paths for the robot

controller (another client).





6
A Product Line for Robust Navigation

This chapter describes how the development process presented in the chapter

3 has been applied to the Robust Navigation domain for defining a new

Product Line, which allows the modeling and the resolution of the Robust

Navigation variability.

6.1 The robust navigation

Robust navigation is the ability of a mobile robot to autonomously move from

its current position towards a goal position, while avoiding collisions with

unexpected obstacles (i.e. moving people) in an indoor environment such as

a hospital or a museum. This task, which may seem simple, actually involves

several functionalities:

• Path Planning computes an obstacle free path as a sequence of in-

termediate waypoints from the current pose to the target pose. This

functionality requires a representation of the environment, which can be

provided in different formats (e.g. a metrical map or grid-based map).

• Pose Tracking uses sensory data (e.g. wheels speed) to estimate the

robot displacements and to update its current pose with respect to the

initial pose.

• Localization, when a map of the environment is available, uses the

95
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sensors data to estimate the robot current pose with respect to a global

reference frame.

• Trajectory Generation receives as input the path computed by the

planner and produces as output a trajectory. A trajectory is a refinement

of the input path, which specifies linear and angular velocity for each

one of its waypoints. These velocities are computed taking into account

the robot kinematic and dynamic constraints and the task constraints

(i.e. the robot is transporting a liquid container).

• Trajectory Adaption receives as input the generated trajectory and pro-

duces as output a modified trajectory that avoids unexpected obstacles

detected by the robot sensors.

• Trajectory Following receives as input a trajectory and implements a

feedback control loop that periodically reads the current robot pose and

generates a twist (i.e. linear and angular velocities along the three axis)

to minimize the distance to the path.

• Robot Driving receives a twist and generates velocity commands to the

robot wheels. It produces as output the odometric estimate of the robot

displacement from the initial pose by integrating the wheels velocities.

• Laser Scanning reads the raw data from a laser rangefinder and produces

as output the corresponding measure expressed as a vector of points in

polar coordinates (distance and heading).

From an algorithmic point of view, the challenging task is to organize

an efficient interaction between these functionalities in order to maximize

performance, safety, and robustness. Mobile robot navigation algorithms

have been a research topic for several decades (see [64] for a taxonomy).

Existing algorithms could be roughly classified as one- and multi-step methods.

One-step methods directly convert the sensor data to a motion commands.

Majority of one-step algorithms are either based on classical planning or on

the potential fields approaches [64]. Today, they are rarely used due to their
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inability to cope with dynamic environment and vehicle constraints. Multi-

step methods (e.g. Dynamic Window Approach [30], Vector Field Histogram

[31], Nearness Diagram [65]) overcome these limitations by creating a local

map of the environment around the robot and performing local planning

by computing possible motion directions (Nearness Diagram) and velocities

(VHF) taking into account the distance to the goal or to a precomputed path.

From a software development point of view, the challenge is to implement

robust navigation functionality as a set of reusable components that can be

assembled into flexible systems. For this purpose, the development process

described in chapter 3 has been applied, which avoids developing from scratch

robot functionalities based on yet another software architecture. Instead, by

collecting and analyzing well known open source libraries providing navigation

functionalities, the process aims at identifying those architectural aspects (i.e.

entities, data structures, interfaces, relationships) that are common to all or

most of the implementations of the same family of functionalities, and those

aspects that distinguish one implementation from another.

6.2 Open source libraries

This section presents the architecture of an open-source library, which provides

mobile-based navigation functionality. The selected library was ROS, because

of its popularity in robotic community (in particular the navigation stack

coming with ROS Fuerte). Figure 6.1 shows a portion of the class diagram

that represents the architecture of the ROS navigation stack. Below a brief

introduction to the class library is provided and some drawbacks of this

implementation are highlighted.

Class BaseGlobalPlanner is an interface of the global planners used in nav-

igation stack. There are two implementations: CarrotPlanner and NavfnROS.

The first one is a simplistic planner, which connects a target pose and the

robot actual pose with a straight line and performs collision checking along

this line. The second is a grid-based A* path-planner for circular robots.

Multiple functionalities are tightly coupled in the implementation of class

BaseLocalPlanner (i.e. trajectory generation, adaptation and execution). It
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MoveBaseTransformListener Costmap2D

BaseGlobalPlannerBaseLocalPlanner

CarrotPlanner NavfnROSDWAPlannerROSTrajectoryPlannerROS

TwistPose PointCloud/LaserScan MapOdometry

Figure 6.1: Mobile base navigation component in ROS

generates a number of trajectories for admissible linear and angular velocities

of the robot. Each trajectory is scored according to an objective function,

which includes goal heading, path heading and obstacle clearance. Finally

the trajectory with maximum objective function is selected and its associated

linear and angular velocity (twist) are sent to the robot driver. Two concrete

implementations of this class are available, namely TrajectoryPlannerROS and

DWAPlannerROS. Both assume implicitly that the robot has a differential

drive kinematics model.

Class CostMap2D is an implementation of 2D occupancy grid-map. It

embeds the data structures for representing a 2D tessellated representation of

the environment. It is used for both path planning and obstacle avoidance.

The top-level class is the MoveBase class, which instantiates all the classes

that implement specific functionalities and starts several threads for their

concurrent execution. Concurrent access to shared resources (e.g. the map

of the environment) is synchronized by means of infrastructure mechanisms,

such as state machines, mutexes and numerous flags and conditions across

the code. There is thus no guarantee that these functionalities are executed

in real-time.

The MoveBase class is instantiated by a main function that starts a

ROS node. Thus, all the functionalities for robust navigation are provided

by a single component (ROS node). This component interacts with other

components in the system (e.g. the robot base driver and the laser driver)

by exchanging ROS messages. The set of exchanged messages represent
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the component interface. Unfortunately, the component interface is not

clearly separated by the component implementation since ROS messages are

produced and consumed by several classes that implement the component.

Thus, the only way to understand how components interact with each other

is to carefully look at the source code.

The implementations of all the classes of the ROS Navigation stack are

tightly coupled with the ROS infrastructure, thus they cannot be reused in a

different environment.

6.3 Refactoring and component design

In order to improve the design of the open source library presented in the

previous section, the refactoring patterns described in section 5.2 have been

applied. The resulting classes have been then encapsulated into reusable

components. The improvements of the new design are summarized in the

following list.

• All the navigation functionalities are now mapped to finer grained

classes, which can be encapsulated in components that have a single

thread of control. This allows to replace individual functionalities easier

and to select the most appropriate implementation for the specific task,

environment and hardware.

• Accordingly, the trajectory generation, the trajectory adaption and

the trajectory following functionalities are now implemented in three

different components (in ROS there is a single node, which encapsulates

the class BaseLocalPlanner). This separation reflects the different

scheduling of the activities of the three components: the Trajectory

Follower runs periodically at a higher frequency with respect to the

Trajectory Adapter, as required by the closed loop position and velocity

control algorithm. On the other side the Trajectory Generator runs

aperiodically and computes a new output only when it receives an input

path.
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• According to the new design the trajectory adaption can now be per-

formed only when strictly required, while previously it was performed

continuously, also in the case of non approaching obstacles. Indeed

the Trajectory Adapter component runs periodically, but it invokes the

trajectory adaption functionality only when the information coming

from the sensor indicates that the robot is approaching an obstacle.

• In its original design the BaseLocalPlanner provides as output a twist.

It is the twist that, during the trajectory evaluation step, produces the

trajectory with the maximum objective function (see the description

of the BaseLocalPlanenr class in the previous section). However the

produced twist is always applied with a certain delay (the time that goes

from the start of the trajectory adaption functionality to the moment in

which the twist is applied on the robot). This delay causes a discrepancy

between the current pose of the robot and the pose of robot according

to which the best trajectory was selected. As a result the applied twist

drives the robot in a pose different from the expected ones. In the new

design instead the Trajectory Adapter produces as output a Trajectory

and the Trajectory Follower implements a position and velocity control

that drives the robot in the desired pose by minimizing the position

error.

6.4 Product line architecture modeling

The first part of this section describes a set of software architectures for

Robust Navigation, which represent different products of the same product

line. The objective is to show how the robotics variability influences the robot

software architecture. Finally the second part introduces the model of the

Robust Navigation Product Line.

Figure 6.2 depicts the architecture of a component based system that

provides the subset of functionalities described in subsection 6.1. Here, Boxes

represent software components. Continuous lines represent data flows or

service invocation (according to the architecture Component-and-Connector
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styles provided by the desired software framework). The line label describes

the type of data exchanged between components. The dashed box groups

components that together provide a high level robotic functionality (e.g. Local

Navigation).

Robot Driver

Trajectory Follower

Trajectory Adapter

Trajectory 
Generator

Trajectory

Trajectory

Twist

Laser Scanner 
Driver

Pose Tracker

local 
nav
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Robot
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Figure 6.2: Local Navigation

The implementation of all the components in figure 6.2, but the Laser-

ScannerDriver and the PoseTracker, depends on the robot kinematic and

dynamic model (robot embodiment). Indeed, robot trajectories should be

compatible with the robot kinematics and dynamics constraints. For example,

a differential drive robot like the Pioneer 3-DX cannot move sideway while a

robot with Ackerman steering cannot turn on place.

The implementation of the Trajectory Adapter is also influenced by the

characteristics of the robot environment. For example, the VFH algorithm [31]

has been proposed for fast robot traveling among densely cluttered obstacles,

while the Elastic band approach [66] is adequate to avoid moving obstacles.

The implementations of some of these algorithms have been refactored in

order to harmonize their interfaces according to the architectures presented

in this section.

Separating component interface from its implementation allows indepen-

dent evolution of client and provider components. If client code depends
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only on the interfaces to a component, a different implementation can be

substituted without affecting the client code.

Clearly, there are constraints among the variants of each component

implementation. For example, if the Robot Driver is specific for the differential

drive robot kinematics, also the implementation of the other components

should be specific for the same kinematic model. On the contrary, if the

Robot Driver is specific for an omnidirectional robot kinematics (i.e. the robot

can turn on place and move in every direction), the other components can

implement algorithms that are specific for more constrained robot kinematics.

Robot intelligence, as the ability to express useful behaviors in the opera-

tional environment, is concerned with the navigation strategies for computing

the path that the robot has to follow in order to reach the goal position.

Depending on the environment, the task, and the available sensors, the robot

can adopt two different navigation strategies for navigation: deliberative or

reactive.

The deliberative strategy requires the robot to have a metric map of

the environment, which specifies the position and shape of the surrounding

obstacles (i.e. walls and furnitures) and allows the robot to identify the

free space and plan obstacle-free paths. The map could be provided a

priori or can be built by the robot itself during an exploration phase. This

map-based navigation strategy requires the robot to have sensors (i.e. laser

scanner or 3D depth camera) that provide accurate measurements of the

surrounding obstacles for both map-building and map-localization. This

strategy is convenient when the environment is mostly static (e.g. an ordinary

home environment) and the task (i.e. floor cleaning) requires the robot

to optimize resource usage (e.g. energy consumption) and meet specific

constraints (i.e. the deadline for task completion).

The reactive strategy requires the robot to be able to recognize and follow

landmarks in the environment. These could be natural landmarks, such as

rocks on the Mars surface, or artificial landmarks, such as visual markers

placed on the floor or on the walls of a hospital. In this case, the robot does

not need a geometric map of the environment, as the paths are implicitly

defined by the sequence of landmarks that the robot encounters while it is
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navigating. The robot should be equipped with sensors (e.g. a monocular

or stereo vision system) that provide information for estimating the relative

position of the landmark with respect to the robot reference frame. This

strategy is convenient when the environment can be structured in order to

simplify the robot navigation stack. This is for example the case of industrial

plants or public buildings.

The left-hand side of figure 6.3 depicts the Kuka youBot omnidirectional

mobile robot performing a reactive navigation. In the figure it is possible

to recognize a few visual markers placed on the floor. A laser rangefinder is

mounted on the front side of the youBot robot at the height of the wheels. The

right-hand side of figure 6.3 shows a screenshot of the ROS 3D visualization

environment (Rviz). The detected markers are represented as red arrows,

the green arrows indicate the local geometric paths followed by the youBot

between subsequent markers, and the white polygonal lines represent the

laser measurements of the walls around the robot.

Figure 6.3: The youBot performing Marker Based Navigation

6.4.1 Map-based navigation

Figure 6.4 depicts the architecture for a Map Based Navigation strategy. The

dashed lines indicate the new connections between the components for Local

Navigation and the components for the Map Based Navigation.
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Figure 6.4: Map Based Navigation

The Map Server component is a data storage of 2D or 3D geometric maps.

Several different representations of geometric spatial data have been proposed

in the literature, which include for example the Occupancy Grid [67] and the

Polygonal Map [68]. The Map Server component provides an interface that

allows other components to retrieve the geometrical representation of the

environment.

A large variety of path planning algorithms have been proposed (see [55]

for a survey) for specific environment representations or for specific operational

conditions (i.e. static or dynamic environment). Chapter 5 described how

several path planning algorithms implementations have been refactored and

packaged into class libraries that provide harmonized data structures and

interfaces.
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The map of the environment can be used also for estimating the robot

pose with regards to the map reference frame. For this purpose, the Localizer

components implements an algorithm that compare the measures provided by

a sensor (e.g. a laser rangefinder or a 3D depth camera) with the environment

representation in the map. Clearly, the localization algorithm depends on the

type of map used to represent the environment. Thus, the implementations

of the MapServer and of the Localizer must be compatible.

Another variation point regards the sensors used for the localization. The

presented architecture assumes to use a laser scanner and requires the use of a

Localizer implementation suited for this device. However other devices, such

as a depth camera, can be used as well. In order to improve the flexibility of

the architecture, the interface between the Localizer and the sensors has been

designed by taking into account the sensor variability. In this way several

sensors can be used without modifying the component interfaces. Indeed the

Point Cloud is a data type that can be used both for laser scanners and depth

cameras, because a laser scan can be basically considered a 2D point cloud.

6.4.2 Marker-based navigation

Figures 6.5 and 6.6 represent the architectures for Marker Based Naviga-

tion. Both robot embodiment and situatedness have an impact on these

architectures.

The camera can be mounted on a support placed in a fixed position on

the mobile robot (architecture depicted in figure 6.5) or can be attached to

the arm of a mobile manipulator robot (architecture depicted in figure 6.6).

In this second case the camera pose can change at runtime according to the

arm configuration. This setup is needed for example when the camera should

be able to locate markers that are placed not only on the floor but also on

the walls around the robot.

The Marker Locator component processes the images received from the

RGB Camera Driver in order to identify the unique ID of the visible markers

and to estimate their position and orientation with respect to the robot

reference frame. Several software libraries are available for implementing this
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Figure 6.5: Marker Based Navigation with the camera in a fixed position

component, such as ARToolKit [69] and ARToolKit Plus [70]. Each library

can be used to localize specific marker types.

In order to compute the position of a visible marker with respect to the

robot reference frame, the Marker Locator component needs to know the

camera pose with respect to the robot reference frame. When, the camera

is mounted on the robot’s arm (figure 6.6), the Kinematics component is

needed, which receives the current position of the arm joints from the Robot

Driver and sends the current camera pose to the Marker Locator. In contrast,

when the camera is mounted on a fixed support (figure 6.5), its pose can be

set as a component property and the Kinematics component is omitted.

The Marker Path Planner component periodically receives the IDs of the

currently visible markers. When it receives also the ID of a goal marker, it

generates a sequence of marker IDs (which is called ID path and is the shortest
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Figure 6.6: Marker Based Navigation with a moving camera

among the possible) from one of the visible markers to the goal marker.

The Marker Path Iterator component receives the IDs and poses of the

visible markers, selects the next marker according to the ID path, and

generates a geometric path containing only the pose of the next marker

along the path.

In this case, despite the output path contains a single pose, the provided

interface of the Marker Path Iterator has been designed by using the Path

data structure (and not just a Pose) for improving the flexibility of the

architecture. Indeed in this way a unique required interface of the Trajectory

Generator can be used for both Map Based and Marker Based Navigation

Strategies. Moreover other navigation strategies can be built on the top of

Local Navigation components.
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6.4.3 Hybrid navigation strategy

Let’s consider a scenario where the robot navigates in an environment charac-

terized by several separated buildings like an University campus. While it is

inside a building the robot can navigate using a geometric map of each floor.

Outdoor the robot follows the markers that indicate the paths among the

buildings. For this purpose, the architectures for both Map Based Navigation

and Marker Based Navigation need to be integrated. This is done by adding

a Global Planner component, which specifies alternatively a goal pose or a

goal marker.

Figure 6.7 depicts the resulting architecture. In order to simplify it

some components and the relative connections have been omitted. They are

connected in the same way described in the previous architectures.
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Figure 6.7: Map Based and Marker Based Navigation

6.4.4 The product line model

All the products, whose architectures have been described above, belong to the

Robust Navigation Product Line. The model of the product line is depicted

in figure 6.8. The model contains all the components used in the previous
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architectures and the connections between components that are typically used

together. Table 6.1 summarizes the components by highlighting their inputs

and outputs, which ones are periodic and which ones are mandatory.
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Figure 6.8: The Template System Model of the RN Product Line

Tables 6.2, 6.3, 6.4, 6.5 and 6.6 describe the interfaces of each component.

In particular the data types are expressed by using the ROS messages IDL,

which doesn’t imply the use of ROS as software framework.

The objective was reusing as much as possible the existing messages.

However for some interfaces, which required data structures not provided by

the ROS messages, a new set of messages (RN msgs) has been defined.

The massages PoseStamped, Transform and Twist are part of the package

geometry msgs ; the messages JointState, Image and PointCloud are part of

the package sensor msgs; the messages OccupancyGrid and Path are part
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of the package nav msgs; finally the message String is part of the package

std msgs.

The RN msgs (MarkerIDs, MarkerPose, MarkerPoses, Trajectory and

Waypoint) are reported in the listing 6.1.

� �
1 Waypoint:

2 geometry_msgs/Pose pose

3 geometry_msgs/Twist twist

4

5 Trajectory:

6 Header header

7 Waypoint[] waypoints

8

9 MarkerIDs:

10 int32[] IDs

11

12 MarkerPose:

13 Header header

14 int32 IDs

15 geometry_msgs/Pose pose

16

17 MarkerPoses:

18 MarkerPose[] poses� �
Listing 6.1: The implementation of the RN msgs

Component Data Port Req/Prov Event Port Data Type

Trajectory Generator
Path Req Yes Path

Trajectory Prov — Trajectory

Trajectory Adapter

Trajectory Req No Trajectory
Point Cloud Req No PointCloud
Robot Pose Req No PoseStamped
Trajectory Prov — Trajectory

Trajectory Follower
Trajectory Req No Trajectory
Robot Pose Req No PoseStamped

Twist Prov — Twist

Pose Tracker
Pose Estimate Req No PoseStamped

Robot Pose Prov — PoseStamped

Table 6.2: The interfaces of the Local Navigation components



112 6 A Product Line for Robust Navigation

Component Interface Req/Prov Event Port Data Type

Robot Driver
Twist Req No Twist

Pose Estimate Prov — PoseStamped
Joint Values Prov — JointState

Laser Scanner Driver Point Cloud Prov — PointCloud

RGB Camera Driver Image Prov — Image

Table 6.3: The interfaces of the Driver components

Component Data Port Req/Prov Event Port Data Type

Geometrical Path Planner
Goal Pose Req Yes PoseStamped

Map Req No OccupancyGrid
Robot Pose Req No PoseStamped

Path Prov — Path

Map Server Map Prov — OccupancyGrid

Localizer
Map Req No OccupancyGrid

Point Cloud Req No PointCloud
Pose Estimate Prov — PoseStamped

Table 6.4: The interfaces of the Map Based Navigation components

Component Data Port Req/Prov Event Port Data Type

Marker Locator
Image Req No Image

Camera Pose Req No Transform
Marker IDs Prov — MarkerIDs

Marker IDs & Poses Prov — MarkerPoses

Marker Path Planner
Goal Marker Req Yes String
Marker IDs Req Yes MarkerIDs

ID Path Prov — MarkerIDs

Marker Path Iterator
ID Path Req Yes MarkerIDs

Marker IDs & Poses Req Yes MarkerPoses
Robot Pose Req No PoseStamped

Path Prov — Path

Table 6.5: The interfaces of the Marker Based Navigation components

Component Data Port Req/Prov Event Port Data Type

Kinematic
Joint Values Req Yes JointState[]
Camera Pose Prov — Transform

Global Planner
Goal Req Yes String

Goal Marker Prov — String
Goal Pose Prov — PoseStamped

Table 6.6: The interfaces of the remaining components
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6.5 Variability model

The feature diagram depicted in figure 6.9 captures the functional variability

of the Robust Navigation Product Line. For sake of simplicity the figure does

not represent the variability regarding all the different implementations of

the components and the different models of sensors.

The feature diagram indicates that the local navigation functionality is

mandatory and that at least one navigation strategy has to be selected.

Two alternative robot kinematics model are supported, i.e. the omnidi-

rectional or the differential drive. The camera can be mounted in a fixed or

movable support.

Two alternative algorithms are available for both the Trajectory Adaptation

(Dynamic Window Approach [30] and Vector Field Histogram [31]) and the

Geometric Path Planning (Probabilistic Roadmap and Rapidly-exploring

Random Trees [55, chap. 5]) functionalities.

It should be noted that the Geometrical Path Planning feature could have

been modeled as children of the Map navigation strategy and the Camera

Position feature as children of the Marker navigation strategy. Instead, the

feature model is enriched with two constraints:

• Map REQUIRES Geometrical Path Planning

• Marker REQUIRES Camera Position

The functionalities for Robust Navigation are provided by software compo-

nents that have been implemented according to two robotic-specific component

models (ROS and Orocos), which are represented as two alternative features.

Navigation Strategy

Map Marker

Robot Trajectory Adaption

Robust Navigation

DWA VFH

Geometrical Path 
Planning

youBot Pioneer 
3Dx RRT PRM

Camera Position

Front Arm

Component Model

ROS Orocos

Local 
Navigation

Figure 6.9: The Feature Model of the Robust Navigation Product Line
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6.6 Variability resolution model

The product line presented in the previous sections allows the deployment of

different applications. This section describes how the required elements and

the transformations map the functional variation points (Feature Model) and

the architectural elements (Product Line Model).

The mandatory feature Local Navigation represents a stable point and

defines as required elements the components for the local navigation, the Robot

Driver, the Laser Scanner Driver and the connections between all of them

(i.e. these components and connections are present in all the applications of

the product line).

The variation point related to the selection of the navigation strategies

involves the connection transformation. When only the feature Marker-

Based is chosen, then the connections between the Marker Based Navigation

components (including the RGB Camera Driver) and the Local Navigation

components have to be created. The required elements of the MarkerBased

feature are the Marker Based Navigation components and the connections

between them. Hence the Map Based Navigation components, the connections

between them and the Global Planner can be removed from the model because

they are not required by any feature.

When only the MapBased feature is selected instead, the Map Based Navi-

gation components have to be connected to the Local Navigation components.

In this case the MapBased feature defines as required element only the Map

Based Navigation components, hence the Global Planner, all the components

for the Marker Based Navigation and their connections are not required by

any feature and can be removed.

When both the features are selected all the connections described above

and the connections to the Global Planner have to be created. Moreover the

Global Planner, the Marker Based Navigation and the Map Based components

have to be conserved because they are all required elements.

The variation point regarding the camera involves a connection transfor-

mation and a property transformation. When the camera is in a fixed pose

(feature Fixed) a property transformation is used for setting the value of the
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Figure 6.10: A screenshot of a feature selection

Marker Locator property (it defines the pose of the camera with respect to

the robot reference frame). When the camera is mounted on the arm instead

(feature On the Arm), a connection transformation is used for connecting the

kinematics component (which provides information about the camera pose)

to the Robot Driver and the Marker Locator. To be noted that the feature On

the Arm is the only one that defines the Kinematics component as a required

element. Hence when this feature is not selected the Kinematics component

is always removed from the model.

The variation points regarding the Robot Trajectory Adaption and the

Geometrical Path Planning involve some implementation transformation.

According to the selected features different implementations for the Local

Navigation components and the Geometrical Path Planner have to be used.

Finally the software framework variation point is only used by the resolu-

tion engine (see subsection 4.5.1) for deciding which Template System Model

has to be used in order to generate the Configured System Model.

6.7 An example of product derivation

Figure 6.10 depicts a screenshot of the Feature Selector tool, which shows a

Feature Model Instance for the robust navigation product line.

Given this feature selection and the Product Line Model depicted in figure
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6.8, the resolution engine will produce as output a Configured System Model

describing the Architecture for the Marker Based Navigation with a moving

camera, which is depicted in figure 6.5.
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7
JOrocos

Recent advances in robotics and mechatronic technologies have stimulated

expectations for emergence of a new generation of autonomous robotic devices

that interact and cooperate with people in ordinary human environments.

Engineering the control system of autonomous robots with such capabilities

demands for technologies that allow the robot to collect information about the

human environment, to discover available resources (physical and virtual), and

to optimally exploit information and resources in order to interact with people

adequately. Common approaches in robotics build on sophisticated techniques

for perception and learning, which however require accurate calibration and

extensive off-line training.

Recent approaches investigate how the robot can exploit the World Wide

Web to retrieve useful information such as 3D models of furniture [71] and

images of objects commonly available at home [72]. In [73] the Robotic

Information Home Appliance is illustrated as a home robot interconnected to

the home network that offers a friendly interface to information equipment

and home appliances.

This new trend poses new challenges in the development of robot software

applications since they have to integrate robotic and information systems

technologies, which account for quite different non-functional requirements,

namely performance and real-time guarantees at one side and scalability,

portability, and flexibility at the other side.

Modern robot control systems are typically designed as (logically) dis-

119
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tributed component-based systems, where the interactions between compo-

nents (control, sensing, actuating devices) are usually more complex compared

to more traditional business applications. In Robotics, the software devel-

oper faces the complexity of event-based and reactive interactions between

sensors and motors and between several processing algorithms. For this

reason, robotic-specific component-based models and toolkits have been de-

veloped, which offer mechanisms for real-time execution, synchronous and

asynchronous communication, data flow and control flow management, and

system configuration.

In contrast, the most common middleware infrastructures for the World

Wide Web and home networks are the Java Platform Enterprise Edition

and Service Oriented Architectures. Service Oriented Architectures (SOA)

have been proposed as an architectural concept in which all functions, or

services, are defined using a description language and where their interfaces

are discoverable over a network [74].

Some attempts to develop robotic applications as SOA systems can be

found in the literature (a recent survey can be found in [75]). Their main dis-

advantage is that they give up the typical component-based nature of robotics

systems and force a pure service oriented approach. More recently, Service

Component Architectures (SCA) [24] have been proposed as an architectural

concept for the creation of applications that are built by assembling loosely

coupled and interoperable components, whose interactions are defined in

terms of bindings between provided and required services. As such, SCA offer

the advantages of both the Component-based engineering approach typically

used in robotics and the Service Oriented Architectures.

In order to bridge the gap between current component-based approaches

to robotic development and modern information systems technologies, the

JOrocos library, which extends the popular Orocos robotic framework [23] with

Java technologies, has been developed. Thanks to JOrocos, a robot control

application can be designed as a SCA system, where components encapsulating

real-time control functionality are seamlessly integrated with web services and

the most common Java toolkits, such as the SWING framework for developing

graphical user interfaces.
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7.1 SCA - Orocos integration

In order to make possible the interaction between SCA and Orocos com-

ponents some architectural mismatches presented by the two frameworks

had to be faced. In fact, despite both SCA and Orocos components inter-

act by exchanging messages, the syntax and semantics of these messages is

fundamentally different.

In SCA messages are used for invoking services provided by components.

Services are defined by explicit interfaces that completely describe the name

of each operation, its arguments and the return value (the signature of the

method). The message sent by the requester component to the provider

component describes which operation has to be executed and provides its

parameters. Hence the execution of the component functionality starts when

the message is received.

In Orocos instead the communications are based on data flows and the

messages are used for exchanging data. Components periodically elaborate

data received on the input ports and write their results on the output ports.

This means that the components business logic is regularly executed every T

milliseconds, where T is the period of the component.

This meaningful difference introduces two main problems:

1. How an invocation of a SCA service can produce an input that will be

processed in the next cycle of an Orocos component business logic?

2. How the data published on an Orocos output port can trigger the

execution of a SCA service?

Let’s introduce how these problems have been solved by means of a simple

scenario in which two SCA components and an Orocos component cooperate

in order to move a Kuka youBot [76] towards a given position. The youBot

is a mobile manipulator with an omnidirectional and holonomic base and a

five degrees of freedom arm. The components are described below:

• A SCA component, called Locomotor, which provides a service for

moving a youBot towards a position defined by the client and monitoring
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its activity. The component is in charge of transforming the given

cartesian position in a set of commands (joint positions), forwarding

them to the robot and retrieving its status. In order to do that the

component requires two services, which are provided by the driver of

the robot for sending and receiving this information.

• An Orocos component, called youBot Driver, which provides an input

port and an output port. The component implements the API of the

youBot and is in charge of actuating the axes in order to reach the

joints positions specified by the client on the input port. The output

port is instead used for periodically publishing the status of the robot,

for example the position and the velocity of the joints.

• A SCA component, called SCA youBot Driver, which is implemented by

using the JOrocos library and represents a proxy to the youBotDriver

component within the SCA system.

The SCA youBot Driver is described by means of the following interfaces:

• Provided interface sendingCommand. This interface provides a ser-

vice for receiving commands from the Locomotor and writing these

commands on the input port of the youBot Driver. The result is the

activation of the youBot Driver operations that are in charge of moving

the robot.

• Provided interface retrievingStatus. This interface is invoked by the

Locomotor. The SCA youBot Driver periodically checks and retrieves

the new data available on the youBot Driver output port. The interface

provides the operation for retrieving these values.

• Required interface notifying. This interface is provided by the Locomotor

and is used by the SCA youBot Driver for notifying some events. The

possible events are idle, busy, refresh. The component raises the event

busy when it starts the execution of an operation and the event idle

when this operation is completed. In this way the Locomotor knows

whether the operation that it requested is completed or not. The event
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Figure 7.1: The youBot Scenario

refresh is instead raised when new data are read from the youBot Driver

output port.

Here it is important to consider that, in order to notify the Locomotor

about the availability of new data before the youBot Driver deadline, the

SCA youBot Driver should check the output port with a frequency at least

two times greater than the one of the Orocos component.

The components and the interfaces of this scenario are depicted in figure

7.1.

Another difference between SCA and Orocos regards the synchronization

of the component operations after the action of sending a message. In SCA

it is possible to define, by means of an annotation, whether the message is

sent in a synchronous or asynchronous way. In the first case the thread that

sends the message suspend itself until the result is returned. In the second

case instead the thread continues its execution without waiting for the return

value. A callback message will notify the component when the return value

of the sent message will be computed. In Orocos all the messages are sent

in an asynchronous way. The components read the data on the input ports

and publish data on the output ports without waiting for other component

activities.

JOrocos faces this problem by providing the possibility of reading data

from the Orocos output port in an asynchronous way, according to the

Publish/Subscribe communication paradigm [77] (more information about

the implementation will be described in the subsection 7.1.3). In this way

both SCA and Orocos component don’t have to wait after sending a mes-
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sage. However a synchronous communication can always be defined in the

implementation of SCA youBot Driver.

The last mechanism provided by SCA that is not defined in Orocos is

the hierarchical composition of the components. In SCA this functionality

is available by means of the concept of composite. A composite contains

different components and allows the developer to promote a set of their

services in order to make them accessible to the clients of the composite. In

this way a composite can be reused as a simple component in a more complex

architecture.

Here it is possible to leverage on this SCA mechanism and create com-

posites that contains different bridges to Orocos components (like the SCA

youBot Driver) and promotes their operations as services. This approach

is inspired by the Facade design pattern, which aims to provide a unified

interface to a set of interfaces in a subsystem [53]. In this way a single reusable

SCA component, the composite, can provide to its clients the functionalities

defined in several Orocos components.

7.1.1 The JOrocos library and its architecture

The JOrocos library offers a set of mechanisms that allow the implementation

of the proxies of Orocos components mentioned in the previous pages (e.g. SCA

youBot Driver). These mechanisms provide the functionalities for reading

and writing on Orocos data ports, reading and writing Orocos properties and

invoking operations provided by Orocos components.

Another interesting mechanism offered by JOrocos is the introspection

of Orocos running components. It provides the functionality for discovering

at runtime which components are available, their ports, their operations and

their properties. This mechanism allows the development of systems more

complex than the scenario defined in the introduction of this section: systems

in which the SCA composite doesn’t have a priori knowledge of the Orocos

components and configures itself at runtime according to the information

retrieved through the introspection. For example, with reference to the

previous scenario, it will be possible to design a system in which the SCA
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composite doesn’t know at compile time which robot has to be controlled.

This information will be retrieved at runtime by introspecting the current

Robot Driver component and according to its ports the SCA Robot Driver

will configure itself.

The functionalities provided by JOrocos are realized on the top of Corba,

the middleware that Orocos uses for exchanging messages between distributed

components. Corba doesn’t guarantee the respect of real-time constraints

and for this reason when the communication between Orocos components

has to be real-time the components have to run on the same machine. In this

way the communication between the local components doesn’t rely on Corba

and so the respect of the real-time constraints is not compromised. In this

direction the use of Corba is not a problem for the SCA-Orocos integration

because the real-time components will be implemented in Orocos and will

run on the same machine.

The architecture of the library is depicted in the UML class diagram

reported in figure 7.2. As showed in the diagram the classes of the library are

organized in two main packages: core and corba.

• The core package contains the classes that store data structures and

offer operations that are middleware independent. These classes define

the core of the library and represent the main entities of an Orocos

system.

• The corba package contains instead the classes whose methods provide

a set of operations that are corba specific.

The classes of the core package whose name starts with the word Abstract

are abstract classes and have to be extended in order to provide the function-

ality that are middleware specific. They represent proxies of Orocos entities

and offer methods for introspecting them and interacting with them. The

other classes of the package are instead completely middleware independent.

The idea is that the separation of the middleware-independent parts (core

package) from the middleware-specific parts (corba package) will allow in

future an easier extension of the library in order to provide a support for

other middlewares.
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Figure 7.2: The JOrocos Architecture
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The main class of the library is named AbstractOrocosSystem. It offers

the functionality that allows a developer to connect his software to a running

Orocos system, introspect its components and retrieve references to them.

An AbstractOrocosComponent is a proxy to an Orocos component and

allows the clients to introspect its data ports and its own service. The class

offers the operations for creating connections to Orocos ports and writing

and reading data on these ports.

The data ports of an Orocos component are represented by means of the

class OrocosDataPort. The interaction with these ports is made available by

the class AbstractOrocosConnection, which provides the channel that allows

the operations of writing data on the output ports and reading data from the

input ports.

An AbstractOrocosService is a proxy to an Orocos service and offers the

functionality for introspecting and invoking its operations and introspecting,

reading and writing its properties. Orocos operations are typically not used

for implementing the kind of operations that regard the business logic of

the real-time components, but for example for configuring their period or

retrieving information about their status (stopped, running, etc.). On the

other hand properties are part of the Service Configuration interface and are

used to load or tune application specific configurations at runtime (e.g. the

parameters of a PID).

The operations of an Orocos service are represented by means of the class

OrocosOperation. The properties are instead described by means of the class

OrocosProperty.

7.1.2 The SCA-Orocos component

This subsection will explain how the interaction between Java and Orocos

works and how the component SCA youBot Driver is implemented. The code

reported in the listing 7.1 shows the interfaces of the services provided by the

component. The annotation @Callback defines the interface that will be used

for notifying the events to the Locomotor. The annotation @OneWay instead

means that the invocation of method will be asynchronous.
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� �
1 public interface retrievingStatus{
2 public double[] getJointsPositions();

3 }
4 @Callback(Notifying.class)

5 public interface SendingCommands {
6 @OneWay

7 public void setJointsPositions(double[] values);

8 }� �
Listing 7.1: The interfaces of the SCA youBot Driver services

The listing 7.2 reports the variables declared in the implementation of the

SCA youBot Driver component.

� �
1 @Service(interfaces={retrievingStatus.class,SendingCommands.class})
2 public class SCAYouBotDriver implements retrievingStatus,SendingCommands,Observer{
3 @Property

4 protected String orocosIP;

5 @Property

6 protected String orocosPort;

7 @Callback

8 protected Notifying locomotor;

9 private AbstractOrocosSystem orocosSystem;

10 private AbstractOrodocComponent youBotDriver;

11 private double[] jointsPosition;� �
Listing 7.2: Part of the implementation of the SCA youBot Driver component

The class implements the interface java.util.Obsever (Observer design

pattern [53]), which defines a method for being notified when a new data is

available on an Orocos output port. Furthermore the class implements the

two interfaces that describe the services.

The first row is a SCA annotation that defines the interfaces of the services

of the component. The rows from 3 to 6 declare two SCA properties used for

configuring the IP address and the port number of the Corba name service,

rows 7 and 8 instead declare a reference to the SCA callback interfaces.

7.1.3 Read and write data on Orocos data ports

The JOrocos library allows both the operations of reading and writing on

an Orocos data port. In order to be executed these operations require a
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connection between the java client and the Orocos port. Two types of

connections are available: data and buffer. On a data connection the reader

has access only to the last written value whereas on a buffer connection a

predefined number of values can be stored.

The listing 7.3 reports the constructor of the class SCA youBot Driver in

which the connections to the port are created.

� �
1 public SCAYouBotDriver(){
2 orocosSystem = CorbaOrocosSystem.getInstance(orocosIP,orocosPort);

3 orocosSystem.connect();

4 youBotDriver = orocosSystem.getComponent(”youBotDriver”, false);

5 youBotDriver.createDataConnectionToInputPort(”commands”, LockPolicy.LOCK_FREE, this);

6 youBotDriver.subscribeToDataOutputPort(”joinstStatus”, LockPolicy.LOCK_FREE, this, 500);

7 }� �
Listing 7.3: The implementation of the SCAYouBotDriver constructor

• rows 2-3 retrieve a reference to an Orocos running system and create a

connection to it.

• row 4 retrieves a reference to the youBot Driver component.

• row 5 creates a data connection to the input port “commands” of the

Orocos component youBot Driver.

• row 6 creates a data connection to the output port “status” and starts

a thread that periodically checks if new data are available on the port.

This functionality is implemented in JOrocos (methods subscribeTo-

DataOutputPort and subscribeToBufferOutputPort). In this case a data

connection with a lock free policy is created. The third parameter

specifies the Observer object that will be notified when new data will

be available on the port (in this case the component itself). Finally

the last parameter defines the frequency with which the availability

of new data on the port will be checked (it is expressed as period in

milliseconds).

Once the component is subscribed to the output port it will be notified as

soon as a new data will be available by means of the method update (inherited
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from the Observer interface). The implementation of this method is reported

in the listing 7.4. It simply stores the new data on the variable jointsPosition

and notifies the Locomotor that new data are available.

� �
1 public void update(Observable arg0, Object arg1) {
2 OrocosPortEvent event = ((OrocosPortEvent)arg1);

3 jointsPosition = ((YouBotStatus)event.getValue()).getJointsPosition;

4 locomotor.notify(”refresh”);

5 }� �
Listing 7.4: The implementation of the method update

At this point the Locomotor is able to retrieve the new data through the

operation provided by the interface retrievingStatus. Its implementation is

reported in the listing 7.5. It simply returns the position of the joints.

� �
1 public double[] getJointsPositions() {
2 returns joinstPosition();

3 }� �
Listing 7.5: The implementation of the interface retrievingStatus

The listing 7.6 reports instead the implementation of the operation defined

in the service sendingCommands. The purpose of this operation is writing the

data received from the Locomotor to the Orocos output port. The component

first notifies the Locomotor that the operation is started, then writes the

values on the “commands” port and finally notifies the Locomotor that the

operation is completed.

� �
1 public void setJointsPositions(double[] values) {
2 locomotor.notify(”busy”);

3 youBotDriver.writeOnPort(”commands”, values, this);

4 locomotor.notify(”idle”);

5 }� �
Listing 7.6: The implementation of the interface sendingCommands

The operations of writing and reading data support both simple and

complex data types and respectively receive as parameter and return as result

instances of the class Object. In this context corba introduced two issues:
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1. Corba returns references to the requested objects as instances of the

class Any (org.omg.CORBA.Any). Hence the result of a read operation

is an Any object. However the objective was returning a more general

Object instance (java.lang.Object).

2. The cast from Any to the right type is possible only by means of the

“Helper” classes that are automatically generated through the IDL-to-

Java compiler. However it was not possible to know every possible data

type a priori and consequently implement all the possible cast in the

code of JOrocos.

These problems have been solved by means of the Java reflection. Indeed,

in the code of the write and read operations the class name is retrieved from

the object that has to be written (in the case of the write operations) or from

the Any object (in the case of the read operations). Then the name of the

class is used for loading at runtime the right “Helper” class and using its

static method for casting Any to Object or vice versa. The listing 7.7 shows

how JOrocos casts an Object to an Any.

� �
1 // value is the ”Object” that has to be written and has to be cast to ”Any”

2 String className = value.getClass().getName(); + ”Helper”;

3 Class<?> helper = Class.forName(className);

4 Method castMethod = helper.getMethod(”insert”, Any.class, value.getClass());

5 // the insert method inserts value in the any object received as second parameter

6 castMethod.invoke(null, any,value);� �
Listing 7.7: The Object to Any cast

7.2 The case study

In order to test the functionalities provided by JOrocos a simple case study

application have been implemented. It is similar to the scenario introduced

in the section 7.1 but the Locomotor component is replaced by a graphical

interface (youBot Monitor component), which is in charge of plotting the

current state of the joints and allowing the user to set the period of the youBot
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Figure 7.3: The case study components

Driver component (the inverse of the frequency with which the operations of

the component is executed). The architecture is depicted in figure 7.3.

The youBot Driver component publishes on the output port a set of values

that describe for each joint the actual position, velocity, current, temperature

and error flag (10 bits that provide information about a set of possible errors).

The component also has a new input port called period. When a new data is

written on this port the component set its period according to the received

value. Due to this new port also the SCA youBot Driver has a new provided

interface named settingPeriod. It provides a service for receiving a new period

value from the youBot Monitor and writing it on the input port of the youBot

Driver.

The youBot Monitor component has two required interfaces that corre-

spond to the provided interfaces of the SCA youBot Driver. It also provides

the notifying interface, which is used by the SCA youBot Driver for notifying

its events.

The SCA components and the Orocos component run on two different

machines: the last one on the embedded pc of the robot whereas the other

two on the supervisor workstation.

The implementation of the SCA youBot Driver component is very similar

to the one reported in section 7.1. The youBot Monitor component is instead

implemented by using the Java SWING and provides several tabs. In the

main tab (figure 7.4) a set of global information about the state of the joints

is showed. This tab also allows the configuration of the youBot Driver period.

The other tabs (figure 7.5) instead provide information about a specific joint
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Figure 7.4: The tab reporting the global information

and plot on a set of charts the trend of the joint values.

This case study demonstrated how JOrocos makes possible and simple the

communication and the cooperation between SCA and Orocos. By writing

few lines of Java code it was possible to retrieve data from the Orocos output

port and set the period of the youBot Driver component. Furthermore the

location of the components over the network (except for setting the IP address

and the port of the name service) and the different programming language

used for implementing the Orocos component didn’t represent a problem,

because these issues were hidden by Corba.
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Figure 7.5: The tab reporting the trend of the joint values
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7.3 Discussion ans future works

This chapter has discussed the problem of making possible the cooperation

between Service Oriented Architectures (SOA) and Data Flow Oriented

Architectures in the robotics field. In particular it focused on SCA and

Orocos, the first a component based SOA and the second a hard real-time

component based robotics framework. The chapter has presented a set of

architectural mismatches between the two component models and a java-

based library, named JOrocos, which allows the developers to bridge these

differences by defining proxy components. Finally a set of guidelines for the

development of these proxies have been presented and applied in a case study.

The first mismatch regarded the syntax and the semantics of the messages

exchanged between the components in the two frameworks. Here JOrocos

provides to the developers the mechanisms for allowing the communication

between SCA and Orocos components and translating SCA messages to Orocos

messages and vice-versa. However JOrocos doesn’t provide the possibility of

directly connecting a SCA Service (or Reference) to an Orocos Port. The

developer has to define, according to the guidelines presented in this chapter,

a proxy component that provides input to the Orocos component when

one of its services is invoked and invoke a service of its client (the SCA

component) when the Orocos component produces data on the output port.

In this direction a possible improvement will consist of (a) using JOrocos for

extending the SCA runtime in order to define a new binding for Orocos and

(b) extending the SCA composite designer for supporting this new binding.

These extensions will replace the role of the proxy component and will allow

the developer to directly connect SCA and Orocos components.

The second mismatch was about the synchronization of the component

operations after the action of sending a message. Here JOrocos doesn’t

provide the possibility of choosing a specific synchronization mechanism. In

order to permit both synchronous and asynchronous way, a specific synchro-

nization mechanism has to be implemented in the proxy component. For

example, the scenario proposed in subsection 7.1.3 hs demonstrated how it

is possible to send messages synchronously and asynchronously. Indeed the
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operation of retrieving the robot status is executed by the SCA youBot Driver

in a synchronous way, whereas the operation of sending commands in an

asynchronous way.

Finally the last mismatch concerned the absence of a hierarchical compo-

sition mechanism in Orocos. Here JOrocos allows the developers to leverage

on the SCA composition mechanism for encapsulating several Orocos proxies

in a SCA composite and reusing it in complex and hierarchical systems.
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Robot software systems are concurrent, distributed, embedded, real time, and

data intensive. Computational performance is a major requirement, especially

for autonomous robots, which process large volumes of sensory information

and have to react to events occurring in the robotics operational environment.

In order to meet performance requirements, robotics algorithms have been

typically implemented in C and C++. Robotics developers in fact have always

considered C++ significantly faster than Java. Despite that, the idea of using

it in robotics is not really new: it has been followed in several projects (see

section 8.1) and recently Willow Garage and Google have started a project

for developing a Java-based porting of ROS [78].

In this chapter a study on the comparison of performance between Java

and C++ is reported. The goal is to quantify the differences and to offer a set

of data in order to better understand whether the performance of Java allows

to consider it a valid alternative to C++ or not, at least for non-real-time

functionalities. For this purpose a well known algorithm originally written in

C++ has been implemented in Java and then compared to the original one.

The chosen algorithm is the Delaunay triangulation and its implementation

comes from the OSG library [79]. It was developed in the computer vision

field but it is typically used also in robotics for reconstructing environment

surfaces from a set of 3D points. The algorithm is well suited for the purpose

137



138 8 Programming Languages Performance Comparison

of this study because it stresses several critical points of the programming

languages performance such as: (a) the frequent access to the memory for

operating on dynamic size array (massive use of the garbage collector) and

(b) the frequent evaluation of logical conditions.

Although in the computer science domain many comparison studies have

been proposed, this test can be considered interesting because the algorithm

has been implemented and executed with a newer and improved version of

the Java JDK. Indeed the current Java Virtual Machine (JVM) offers a new

compiler, which greatly improves the performance of Java with respect to the

older versions.

8.1 Java for robotics

Java is an object oriented programming language and it was intended to

serve as a new way to manage software complexity. It offers to its users a

set of software libraries and specifications, which allow the designing and the

deploying of cross-platform applications. Java is used in different application

domains such as enterprise resource planning (ERP) and web servers (e.g.

JSP). It is widely spread also on mobile phones and embedded devices. This

section presents a set of robotics projects developed with Java and a survey

on several performance comparisons between Java and C++.

8.1.1 Robotics Java projects

During the 2011 Google I/O the researchers of Willow Garage and Google

presented a new project that aims to develop a pure Java implementation

of ROS [78]. By means of this project Google and Willow Garage aim to

boost the development of advanced Android applications for robotics and

easiness the access to the cloud computing for reducing the cost of the robotics

hardware.

In [80] the integration of Matlab in a distributed behavioral robotics

architecture is presented. The architecture is completely implemented in Java

and leverages on the Jini platform for distributed object registration, lookup
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and remote method invocation. The Matlab integration is realized by means

of JMatLink and allows the invocation of Matlab scripts and the access to

the Matlab workspace as a distributed object. The authors present as case

study a multi-robot mines detection. In [81] a team from Lund University

demonstrated that it is feasible to develop a motion control system entirely

in Java. They designed an application that takes a picture of a person and

controls a pick and place robot in order to draw on a paper the result of the

shooting. The software and the motion controller guarantee the respect of

the real time constraints by means of Java RTS. In [82] a real-time system for

controlling a remote manipulator over a local area network or over internet

is presented. The developers implemented both the control system and the

teleoperation of the robot in Java. In [83] an autonomous motion planning

system completely developed in Java is introduced. The application allows

the user to set up the working environment though a graphical interface and

offers the functionalities of collision detection, obstacle avoidance, free-paths

generation and selection of the shortest path. Finally in [84] an application

for controlling robots through the World Wide Web is implemented. The

software is designed for dealing with low bandwidth and high latency and

allows the operator to control the robot from any computer connected to the

web.

8.1.2 Java versus C++

One of the main differences between Java and C++ is that the first was

born as an interpreted language while the second as a compiled language.

Compiled languages are translated into machine code trough a compiler. This

process generates a file that can be directly executed by the CPU. Interpreted

languages are compiled in a platform independent language (bytecode), which

can be executed only by means of an interpreter (e.g. JVM). Hence, programs

written in C++ (compiled language) are platform dependent and must be

compiled for every computing platform before the first execution. Java

programs instead are translated into bytecode only once and can be used on

different platforms. However they have to be interpreted at every execution
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(the JVM is platform dependent). For this reason interpreted languages are

in general more flexible and portable than compiled languages but at the

same time slower.

In order to improve the performance, in 1998 Java 1.2 was released with a

new feature called Just-In-Time compiler (JIT)[85]. JIT is integrated into

the JVM and is in charge of translating the Java byte code into binary code.

Each method is translated only when it is called for the first time. Thanks to

this improvement the execution time decreases and the code is again portable.

Many comparisons between C, C++ and Java were documented in litera-

ture. From this point the description calls “Java” the version optimized with

JIT and “interpreted Java” the original version. In [86] the execution times of

C++ and Java are compared. The authors tested the execution of four sorting

algorithms, two of O(n2) complexity (bubble sort and insertion sort) and two

of O (n · log (n)) (recursive quick sort and heap sort), on four integer data sets

of different sizes. The results demonstrated that C++ was much faster than

pure interpreted Java (from 11 to 20 times) and only from 1.45 to 2.91 times

faster than Java (version 1.3). In [87] a set of polynomial multiplications was

computed and executed using the three languages. The results showed that

Java completed the operations faster than standard C (mean of 21%) but in

average 2.61 times slower than C++. In [88] the executions of the Linkpack

benchmark were compared for Java and standard C. This benchmark was

introduced by Jack Dongara and measures how fast a computer solves a dense

N-by-N system of linear equations. The results showed that for a 1000 x

1000 system Java was 2.25 times slower than C. In [89] Ruolo evaluated the

Java method call performance. Different tests with a different numbers of

parameters showed that Java was only one clock cycle slower than C++. The

same tests also highlighted that the time needed for allocating user defined

objects on the heap was roughly equivalent. However C++ also uses the

stack for allocating temporary object and in this case it was from 10 to 12

times faster than Java, which uses only the heap. Interesting conclusions

were reported by Mangione [90]. He tested the repetitive execution of simple

operations like integers and float divisions and showed that Java was as fast

as C++. As summarized in table 8.1 all the papers report that, since the
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Paper Test Java vs. C Java vs. C++ JDK C/C++ compiler

[86] Sorting alg. — 1.45 - 2.91 Sun 1.3 Borland v. 5.5
[87] Polynomial mult. 0.79 2.61 Sun 1.2b5 Sun Workshop C 4.2
[88] Linkpack bench. 2.25 — Sun 1.2b4 —
[89] Method call — 1 clock slower Please refer to the paper
[90] Int and float div. — ∼ 1 Sun 1.1.5 Visual C++ 5.0

Table 8.1: Results summary (Columns 3 and 4 report the execution time
ratios)

introduction of the Just-In-Time compiler, Java is only 1.45-2.91 times slower

than C++.

Since these studies demonstrated that the execution of simple operations

in Java is more or less as fast as in C++, one factor that could influence

the total execution time of a Java program is the Garbage Collector (GC).

However [91] showed that Java GC is as fast as a malloc/free operation in

C++. In fact when a program executes a malloc operation, the allocator

looks for an empty slot of the right size and returns a pointer to a random

place in the memory. In Java instead the allocator selects the bits of memory

adjacent to the last bit it used. Hence it doesn’t need to spend time looking

for memory. In conclusion the amount of time used for the garbage collector is

comparable to the amount of time that the allocator uses in C++ for finding

free memory slots.

Finally other interesting results are documented in [92]. The same program

was implemented by 40 different programmers in different languages (24 in

Java, 11 in C++ and 5 in C). The experiment compared not only the perfor-

mance of the languages but also the differences between the implementations

in the same language (interpersonal differences). The results demonstrated

that Java was 2 times slower than C++ and that the interpersonal differences

were much larger than the average difference between Java and C++. That

means a well written Java program can be as efficient as an average C++

program.
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8.2 The performance comparison case study

Visual sensors such as laser scanners and depth cameras acquire information

on the environment geometry in form of a point cloud: a set of vertices in

a 3D coordinate system. Each one of these vertices corresponds to a point

on the surface of one of the objects present in the environment. In order to

reconstruct the surface of these objects the vertices have to be connected.

This problem is called mesh generation and one of the possible solutions

consists of the Delaunay triangulation [93].

Delaunay’s algorithm connects the set of points in such a way to build

a series of triangles that respect the following property: for all the set of

points there is no point which lies inside the circumcircle of any triangle. The

triangulation result is unique except if more than three vertices stand on the

same circumference. In this case more than one solution exist.

In this section a comparison between a C++ and a Java version of the

Delaunay triangulation will be reported. The Java version is the result of

the refactoring of a C++ implementation coming from the OSG libraries [79].

The implementation of this triangulation algorithm is based on the Bowyer-

Watson method, which works in the plane space. It iterates all the points of

the cloud and for each one executes two main steps: identifying the triangles

whose circumcircle contain the current analyzed point and then building a

new set of triangles, which respect the Delaunay condition. This algorithm

allows to process point clouds in 3D space but realizes only a triangulation

in the plain space therefore the Z coordinate is ignored. It should be noted

that the implemented algorithm does not provide a constrained Delaunay

triangulation. For this reason, during the timing and the comparison of the

computation time, the constraints of the OSG version have been excluded.

Both the OSG and the Java implementations receive as input the point

cloud in form of a collection of vertices. The OSG implementation defines a

custom class, Vec3Array, which is a specialization of the class MixinVector 1.

Vec3Array defines a vector of Vec3 instances, which are triplets of float

1 MixinVector allows inheritance to be used in order to easily emulate derivation
from std::vector but without introducing undefined behavior through violation of virtual
destructor rules [94]
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data types. The refactored implementation instead uses the Java ArrayList.

This collection has been chosen because it is the fastest of all the collections

provided by the Java framework for what regards the operations of inserting,

iterating and sorting [95], and because its performance are comparable with

the one of Java Vector. On the other side ArrayList, like C++ std::vector, is

not as well efficient when it has to perform the operation of removing elements

in random position. In order to better understand how much the overhead

between Java and C++ is due to these data structures, the performance of

the Vec3Array and ArrayList collections have been compared by executing

a set of tests on the operations that are most used during the triangulation

algorithm.

• Insertion. This test executed 10000 and 100000 insertions of objects

(instances of class that represent the 3D points) at the end of the two

collections. The values of 10000 and 100000 have been chosen because

they are the maximum orders of magnitude of the collection sizes used

in the tests of the Delaunay algorithm.

• Removal. This test executed the complete clearing of collections of

10000 and 100000 objects. It removed one element at time. In order to

evaluate the performance in the worst case, the object at the head of

the collection was chosen to be deleted during each iteration.

• Sorting. This test invoked the sorting function on collections of 100

and 1000 points generated randomly. These size values, which are lower

with respect to the tests of the other operations, have been chosen

because in the Delaunay algorithm the sorting is always executed on

little collections (see more details below).

Each test was executed 50 times and then the mean time was computed.

They were executed on a 3.2 GHz Intel Pentium 4 processor with 1GB of

RAM under Ubuntu 10.4 (OpenJDK Runtime Environment v. 1.6.0 20 and

GCC v. 4.3.3). Results are reported in table 8.2 where times are expressed

in milliseconds and regard the execution of all the n operations. ArrayList is

faster than Vec3Array during the insert and the remove operations, whereas
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it takes much time to compute the sorting because of the used algorithm.

Indeed the method for sorting Java collections uses a modified merge-sort

algorithm [96], which offers guaranteed O (n · log (n)) performance. The

sorting algorithm provided by the C++ STL library instead uses the introsort

algorithm whose worst case complexity is O (n · log (n)).

Insert Remove Sort

N. of elements 10000 100000 10000 100000 100 1000

Java 1.30 6.33 46.67 5168.21 0.13 0.42

C++ 1.51 11.27 275.82 27799 0.02 0.40

Java vs C++ 0.86 0.56 0.17 0.19 6.5 1.05

Table 8.2: Times report - Collection comparison

The study also analyzed the time required for the evaluation of logical

conditions. Four tests were executed, taking into account the following logical

conditions:

• Simple logical proposition (var == true)

• Disequation (a < b). (This is the most evaluated condition in the case

study, see eq. 8.1)

• Logical disjunction of two disequations ((a < b)||(a > c))

• Logical conjunction of two disequations ((a > b)&&(a < c))

Each evaluation was executed 10000 times and each test was repeated 50

times. Table 8.3 reports average times of the tests in milliseconds. A boolean

variable, initialized false and changed each execution (var = !var), was used

in the first test and float variables (initialized with a constant values) in the

others. As described in the table, Java is always faster than C++, except for

what regards the evaluation of simple logical proposition.

8.2.1 The implementation details

The two implementations compute the triangulation according to the same

steps, which are described in the following list.
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Prop. Diseq. Disj. Conj.

N. of elements 10000 10000 10000 10000

Java 0.187 0.084 0.103 0.093

C++ 0.039 0.262 0.452 0.290

Java vs C++ 4.79 0.32 0.23 0.32

Table 8.3: Times report - Logical conditions evaluation comparison

1. Initialization. The Initialization step consists of the setting up and the

sorting of the input point cloud according to their coordinates. Then

four new points are inserted in order to surround the plain point cloud.

These four points are used to build two main triangles (super-triangles),

such that the plain point cloud lies inside their area. These triangles

are stored in a collection, which is called trianglesList. The collection

data structure was chosen accordingly to the operations that occur

more often, indeed the trianglesList is subject to several iterations,

insertions and removal. As shown in [95], ArrayList is the list of all the

available lists in the Java framework that perform insertion, iteration

and random access in the fastest way. Although removing objects from

ArrayList requires a long time, insertions and iterations occur more

often than remove operations; as a consequence ArrayList was chosen

for implementing the trianglesList.

2. Iteration. During the iteration, each point is considered and is compared

to the triangles contained in the trianglesList. First the condition 8.1

is checked (“point” stays for the current point and “tri.circ for the

circumcircle of the current triangle).

point.X − tri.circ.X > tri.circ.radius (8.1)

• If the condition is satisfied, the current triangle is removed from the

triangleList and will not be more considered because the current

point and also the following ones surely don’t lie in the circumcircle

of the current triangle (i.e. the triangle respects the Delaunay
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condition for all the points and it is part of the final mesh). This

is guaranteed by the initial ordering of the points.

• If the condition is not satisfied, it is necessary to further inves-

tigate if the current point effectively lies in the circumcircle of

the current triangle. In case it is true the Delaunay condition is

not respected. Therefore the edges of the triangle are added to

a specific ArrayList (called edgeSet) and the current triangle is

deleted. Otherwise, if the Delaunay condition is respected, the

next triangle is considered. It has to be noted that the edgeSet

collection has been implemented as an ArrayList because it is

sorted many times during the triangulation algorithm. Hence,

the usage of Collections.sort method and ArrayList is the Java

solution that allows us to save time and increase performance in

the best way. In the tests of this study the maximum size of the

edgeSet collection was never greater than 100.

When the whole trianglesList has been scanned, new triangles are

constructed from the edgeSet collection and added to the triangleList

(in these tests the maximum order of magnitude of this collection size

is 10000). Note that if an edge is shared between two triangles that

contain a point, then the edge is not considered. The iteration proceeds

until all points have been analyzed, except for the four points created

during the initialization.

3. Completion. The four points introduced during the initialization step

and triangles having vertices in common with these four points are

deleted. If there are degenerate triangles (circumcircle radius equals to

0) they are eliminated too. Finally a return result is built in form of a

mesh.

Since the order of magnitude of the size of the list on which the algo-

rithm performs more insertion is 10000, whereas the one of the collection on

which the algorithm performs the sorting is 100, the time gained in Java for

populating the first collection is more or less equivalent to the time lost for
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sorting the second one (see table 8.2). This suggests that the time spent for

managing collections is more or less the same for both the Java and C++

implementations. The evaluation of logical conditions instead seems to be

not important from a performance point of view. In fact the time spent for

evaluating conditions on 10000 iterations is much lower than the time spent

for populating collections in more or less 100 iterations.

8.2.2 The Java HotSpot compilers

The current JVM offers a technology called HotSpot Compiler [97], which

works better and faster than the pure JIT compiler. Rather than compiling

each method at the first execution, the HotSpot runs the program using an

interpreter for a while. During this time, in order to detect the most used and

critical methods, the execution is analyzed. The collected information is then

used to perform more intelligent optimizations and only the critical methods

are actually compiled. This technique is called “Adaptive Optimization”.

It doesn’t only produce better performance but it also reduces the overall

compilation time. The adaptive optimization is continuously performed so

that it adapts the performance to the users’ needs.

The Java Platform Standard Edition offers a JVM that comes with two

compilers: the Client and the Server versions2. The Client compiler is the

default one and it has been specially tuned to reduce the start-up time. It

is designed for client environment, in particular for applications where there

is not the need of continuous computation, for example a GUI. The Server

compiler instead is designed for long-running server applications, where the

operating speed is more important than the start-up time. This compiler

offers an advanced adaptive optimizer and supports many of the optimizations

offered by the C++ compilers.

Subsections 8.2.3 and 8.2.4 report the tests executed using the client

compiler whereas the server compiler is used in the experiments of subsection

8.2.5.

2Users can specify the compiler by means of the options “-client” and “-server”. The
tests on the collections and logical conditions were executed with the client compiler
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8.2.3 Performance analysis

The algorithm was executed on five point clouds of different sizes: a semi-

sphere, a floor, the Oxford Bunny and 2 terrains. Each point cloud was

processed 50 times and the execution time was measured; then the average,

the standard deviation and the confidence intervals (1 − α = 0.95) were

computed. In the first experiment each triangulation corresponds to a single

program invocation, hence the program was executed 50 times per point

cloud.

Table 8.4 reports the results of the test executed on the same PC presented

before, running Windows XP (Sun Java 6 v. 1.6.0 23 and C++ programs

compiled with MinGw v. 3.82 and GCC v. 4.5.0). Mean time, standard

deviation and confidence intervals (c1 and c2) are expressed in milliseconds.

Java vs. C++ is the ratio between the average execution time.

Sphere Floor Bunny Terrain 1 Terrain 2

Number of vertices 642 10000 35947 66049 263169

Java

Mean 70.62 1458.8 3102.2 20344 132926

Std Dev. 7.89 12.90 52.96 403.44 986.18

c1 68.38 1455.1 3087.1 20229 132646

c2 72.86 1462.5 3117.3 20459 133206

C++

Mean 7.50 298.13 886.25 3305.9 22908

Std Dev 7.89 25.61 63.77 144.83 227.06

c1 5.26 290.85 868.13 3264.8 22844

c2 9.74 305.40 904.37 3347.1 22973

Java vs. C++ 9.42 4.89 3.50 6.15 5.80

Table 8.4: Times report - Multiple invocation - Windows - Java Client

Referring to the table 8.4, the triangulation execution time obtained with

the first point cloud (sphere) is not very truthful. Indeed the Java version is

9.42 times slower than C++ one and this value doesn’t fit the ratios obtained

with the other point clouds. In this case the execution time is very small and

so the time required for compiling the code greatly influences the result. Note

that the costs required by the compiler have a fixed part, which is the same

for each point clouds. Hence the smaller is the point cloud, the greater is the
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influence of the compilation overhead on the execution time.

8.2.4 Single program invocation

In order to avoid the compilation overhead the measuring strategy was changed.

A second experiment was set up, where 51 triangulations were measured in

a single program invocation. This kind of experiment corresponds to a long

run execution, where only the first invocation of the algorithm pays the

compiler costs. The execution time of the first invocation was discarded and

the statistics were computed on the other 50 samples. Tables 8.5 and 8.6

reports the results obtained under Windows and Ubuntu Lucid (both with

the same Java and C++ versions presented before). As expected, the average

execution times decrease for Java and remain more or less the same for C++.

Sphere Floor Bunny Terrain 1 Terrain 2

Number of vertices 642 10000 35947 66049 263169

Java

Mean 15.58 1157.2 2487.2 18108 115977

Std Dev. 0.50 18.82 20.57 80.53 399.65

c1 15.44 1151.9 2481.3 18085 115863

c2 15.72 1162.6 2493.0 18130 116091

C++

Mean 6.56 288.75 914.06 3226 23168

Std Dev 7.79 7.89 11.92 110.36 605.89

c1 4.35 286.51 910.68 3195 22996

c2 8.78 290.99 917.45 3257 23340

Java vs. C++ 2.37 4.01 2.72 5.61 5.01

Table 8.5: Times report - Single invocation - Windows - Java Client

Table 8.5 shows that under Windows, without the compiler overhead,

Java performance are always better than the results reported in table 8.4, but

remain worse than the results discussed in section 8.1. Indeed in the tests the

execution time ratio between Java and C++ goes from 2.37 to 5.61 against

the range 1.45-2.91 reported in table 8.1. One possible reason is that the

triangulation process requires an intensive use of the memory and probably

the C++ version leverages the possibility of store temporary objects on the

stacks, which is much faster [89].
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Sphere Floor Bunny Terrain 1 Terrain 2

Number of vertices 642 10000 35947 66049 263169

Java

Mean 6.66 869.20 2111.3 13478 92301

Std Dev. 1.48 40.83 80.94 106.06 383.57

c1 6.24 857.60 2088.3 13448 92191

c2 7.08 880.80 2134.3 13508 92410

C++

Mean 3.23 224.01 750.09 3333.4 24277

Std Dev 0.84 2.35 7.41 62.90 437.73

c1 2.99 223.35 747.99 3315.5 24152

c2 3.47 224.68 752.20 3351.2 24401

Java vs. C++ 2.06 3.88 2.81 4.04 3.80

Table 8.6: Times report - Single invocation - Linux - Java Client

Table 8.6 shows that under Ubuntu Java is more efficient than under

Windows. Indeed the ratio range goes from 2.06 to 4.04. It should be noted

that the tests were executed with both the OpenJDK and the Sun JDK.

However this section reports only the first one because the results were almost

the same.

Another consideration can be done on the relation between the point cloud

sizes and the execution time ratios. The values of the performance ratio don’t

show a linear trending, hence it is possible to assert that for this algorithm

there is no correlation between the performance ratio and the input size.

8.2.5 JVM Server option

Tables 8.7 and 8.8 report the results obtained using the Server compiler. The

tests were executed on the same machine used previously with the same

configurations. Of course, only the Java version was tested, hence the C++

rows report the results of the previous experiments. Despite the optimizations

provided by GCC were considered as well, they were not applied because the

default release configuration of the OSG libraries is already tuned in order to

offer the best performance.

The results in table 8.7 show that under Windows the server compiler

considerably reduces the average execution time of complex operations. In
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Sphere Floor Bunny Terrain 1 Terrain 2

Number of vertices 642 10000 35947 66049 263169

Java

Mean 24.96 356.26 999.02 4873.1 30320

Std Dev. 15.45 20.16 20.40 42.80 230.28

c1 20.57 350.53 993.22 4861.0 30255

c2 29.35 361.99 1004.8 4885.3 30385

C++ Mean 6.56 288.75 914.06 3225.9 23168

Java vs. C++ 3.80 1.23 1.09 1.51 1.31

Table 8.7: Times report - Single invocation - Windows - Java Server

particular the execution times decrease 3-4 times with respect to the client

compiler. The first cloud represents the unique exception. Indeed, in that

case the execution is too short and so most of the iterations are executed

without optimization. This is the typical case in which the larger start-up

time required by the server compiler is not compensated. Regarding the other

point clouds, the ratio range goes from 1.09 to 1.51 and so Java is nearly

equivalent to C++.

Sphere Floor Bunny Terrain 1 Terrain 2

Number of vertices 642 10000 35947 66049 263169

Java

Mean 20.40 428.5 1253.1 4778.9 29368

Std Dev. 19.58 20.66 56.64 172.29 250.81

c1 14.84 422.63 1237.0 4729.9 29297

c2 25.96 434.37 1269.2 4827.8 29440

C++ Mean 3.23 224.01 750.09 3333.4 24277

Java vs. C++ 6.32 1.91 1.67 1.43 1.21

Table 8.8: Times report - Single invocation - Linux - Java Server

The results in table 8.8 demonstrate that also under Ubuntu the server

compiler significantly improves the performances. The same considerations

reported above could be applied to the results obtained with the first cloud.

Referring to the other clouds the ratio range goes from 1.21 to 1.91 and the

average execution times are from 2 to 3 times better than the results obtained

with the client compiler.



152 8 Programming Languages Performance Comparison

8.3 Discussion

This chapter has described a study on the evaluation of the performance of

Java with respect to C++ in robotics applications. The results obtained with

the Client compiler, which works better for short-running applications, have

shown that Java is from 2.72 to 5.61 times slower than C++. The use of

the Server compiler, which is best tuned for long-running applications, has

instead demonstrated that Java is from 1.09 to 1.91 times slower. These

results show that the performance of Java are now better with respect to the

tests previously documented in literature and demonstrate that the use of the

Server compiler for long run applications greatly reduces the execution time.

In addition to the fact that now the performances are not so different

with respect to C++, it is also important to consider that Java offers a set of

interesting features.

• Portability : Java is designed to be platform independent and so Java

software is very portable. The low level data types such as integer

and float are fully defined in Java specification and are not platform

dependent.

• Reusability : Java comes by default with a lot of common libraries for

several purposes. It is also easy to deploy and reuse the developed

libraries without sharing source or header files or requiring a specific

compiler.

• Maintainability : Java is designed to forbid common bugs such as dan-

gling pointers, casting errors, out-of-bounds arrays, stack overflows,

segmentation faults and uninitialized variables.

In conclusion, the results obtained with the server compiler and these

important features suggest that Java can be considered a valid alternative

to C++, at least for non-real-time functionalities. New experiments can be

executed in order to further confirm this thesis. These tests should especially

regard the communication with external devices (USB, RS-232, etc.) and the

execution of multi-thread programs.
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Decoupling computation and coordination

A component-based system is a composition of components and the way

components interact with other components and with the computational envi-

ronment greatly affect the flexibility of the entire system and the reusability

of individual functionality.

Supporting seamless evolution of a component-based robotic system with

frequently changing requirements advocates for the separation of different

design concerns (Computation, Coordination, Configuration and Communi-

cation, the famous 4CS introduced by [98]) in such a way that component

features affected by robot variability can be changed independently one from

the others. These include the deployment of components on different and

possibly networked computing platforms, the data exchange coordination and

synchronization among components, the selection and composition of compo-

nents providing specific functionalities and the assignment of computational

resources to each component.

Focusing on Computation and Coordination, the Computation is related

with the data processing algorithms required by an application and defines

how the functionalities are realized. Coordination instead, which should be

orthogonal to the computation, is more concerned with the interaction of the

components [98] and defines when the functionalities are used. Components

can typically interact in two ways: they cooperate with each other in order

to achieve a common goal and at the same time they compete for using

shared resources such as memory, CPU and external devices (e.g. sensors and

153
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actuators). Cooperation and competition are forms of interactions among

concurrent activities, which overlap in the time and are interleaved with one

other on a single processor. Correct interleaving of concurrent activities can

be reached by means of coordination algorithms.

In order to decouple as much as possible the Computation and Coordina-

tion concerns, they can be modeled by using two different software frameworks.

For what regards the computation one of the software framework presented

in section 2.2.4 can be adopted. Coordination instead can be managed by

means of the State Machines formal methods. In this chapter the component

model offered by the Service Component Architecture (SCA)[24] is used for

modeling computation while the Abstract State Machines formal method

(ASM)[99] is adopted for the Coordination.

SCA was already presented in this thesis. ASM is instead an operational

(read: executable) formalism that provides accurate yet practical industrially

viable behavioral semantics for pseudo-code on arbitrary data structures.

This specification method is tunable to any desired level of abstraction, and

besides ASMs comes with a rigorous mathematical foundation, it provides

rigor without formal overkill. In particular a service-oriented flavor of the ASM

formalism, named SCA-ASM [100], was adopted. SCA-ASM is a formal and

executable modeling language. It is based on the SCA software framework, for

heterogeneous service-oriented component assembly, and on the ASM formal

method, which allows to model behavioral notions of service interactions,

orchestrations, compensations, and the services internal behavior.

This chapter illustrates by means of a case study how the aforementioned

frameworks can be used for orthogonally modeling the computation and

coordination concerns during the design of component based robotics systems.

9.1 The case study

The case study proposes a simple scenario where a laser scanner offers its

services to different clients, which concurrently compete for the use of this

shared resource. The problem, the requirements and an abstract solution are

presented in this section.
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9.1.1 The problem

The scenario is defined by the following three participants, which are illustrated

in figure 9.1.

• A Laser Scanner, which executes scans of the environment on demand

and writes the acquired values on a data buffer. A scan is a sequence

of measures executed in a single task (for example 360 values, one for

each degree). It is supposed that the Laser Scanner allows its client

to request a scan from an initial angle (start) to a finale one (end), by

defining the start angle and the number of steps between start and end.

• A 3D Perception application, which requests the measures of the Laser

Scanner in order to generate a set of meshes that describe the surface

of the objects present in the environment.

• An Obstacle Avoidance application, which requests the measures of the

Laser Scanner in order to detect the obstacles along the robot path.

Laser
Scanner

Client 1 
3D Perception

Client 2
Obstacle Avoidance

Figure 9.1: The three participants

9.1.2 The requirements

The proposed scenario is subjected to the following requirements:

1. The laser scan is an activity that requires an amount of time in order

to be completed. This time is not fixed, and depends on the number of

measures requested by the client. During this time the client could have



156 9 Decoupling computation and coordination

the need of executing other operations and for this reason it doesn’t

have to be blocked while it waits (asynchronous request of the service).

2. The clients could request a single scan or multiple scans (for example 4

scans composed each one by 20 measures).

3. While the Laser Scanner is executing a scan requested by a client A, a

client B could require another scan. These requests have to be managed

according to one of the following request management policies:

• Policy 1: discard the scan request.

• Policy 2: queue the scan request.

According to these requirements it is possible to imagine at least the

following three situations, in which the Laser Scanner receives requests from

its client.

The first situation is described in the sequence diagram depicted in figure

9.2. The client requests a scan to the Laser Scanner and then it waits until

the end of the scan process. When the Laser Scanner finishes its work it

returns to the client the measures. In this case the request is synchronous.

Client 1 Laser Scanner

Figure 9.2: Situation 1: sequence diagram
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The second situation is described in figure 9.3. The client requests a scan

to the Laser Scanner and then it continues to execute its work. In this case

the request has to be asynchronous.

Client 1 Laser Scanner

Figure 9.3: Situation 2: sequence diagram

The third situation is described in figure 9.4. In this case the client A acts

as in the second situation. However while the Laser Scanner is executing the

Client 2 Laser ScannerClient 1

Figure 9.4: Situation 3: sequence diagram
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scan requested by the client A, the client B sends another request to the Laser

Scanner. This example highlights how different clients could simultaneously

access the services offered by the Laser Scanner and the need of managing

these different requests by means of a request management policy. In the

sequence diagram of the third situation the policy 1 is applied (the third

situation is not strictly related to the policy 1 but regards also the policy 2)

and the service requests are asynchronous.

9.1.3 A high-level solution

The first two situations don’t require a simultaneously access to the Laser

Scanner services and so the client and the Laser Scanner can directly interact.

Figure 9.5 illustrates how the components interact. The client A requests a

scan to the Laser Scanner, which writes each measure on a Measures Buffer.

Then, when the scan is finished:

• the Laser Scanner returns to the client A the measures (Situation 1); or

• the Laser Scanner notifies the client that it has completed its work. After

that, the client requests the measures to the Laser Scanner (Situation

2).

Sensor Component

Measures 
Buffer

Laser ScannerClient A

Figure 9.5: High-level solution for the situations 1 and 2

The third situation instead presents a simultaneously access to the Laser

Scanner services. In this case the interactions between the clients and the
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Laser Scanner have to be managed by a third part: a coordinator. The Sensor

Coordinator is in charge of forwarding the client requests to the Laser Scanner

and for this reason it has to manage the concurrent access of the clients.

Figure 9.6 illustrates the components architecture. The interaction between

components is summarized in the following list.

Sensor Component

Sensor 
Coordinator

Measures 
Buffer

Laser 
ScannerClient B

Client A

Laser ScannerClient B

Client A

Figure 9.6: High-level solution for the situation 3

1. The Sensor Coordinator receives a request of scan from a client.

2. According to the Sensor Coordinator policy (see above) the new request

could be discarded, queued or forwarded to the Laser Scanner.

3. When the request is forwarded, the Laser Scanner starts the scanning

work and sends a notification to the Sensor Coordinator (Ack) in order

to inform it that the scan has started.

4. The Laser Scanner writes each measure on the Measures Buffer until

the final angle is reached.

5. The Laser Scanner sends a notification to the Sensor Coordinator (Done)

in order to inform it that the scan is finished.

6. The Coordinator sends a notification to the client in order to inform it

that the new measures are available on the Buffer.
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7. The client accesses the Measures Buffer in order to read the measures.

Depending on the number of scan requested the Sensor Coordinator will

forward to the Laser Scanner one or more single scans.

The Sensor Coordinator policy can be defined by means of a finite state

machine. A first version is reported in figure 9.7. It implements the request

management policy 1: if a request is received while the laser is already

scanning the new request is discarded.

SCANNING

IDLE
BUSY

scan(from, nSteps)

"Ack" 

"Done" 

Figure 9.7: Sensor Coordinator Finite State Machine, version 1

The sates have the following meaning.

• IDLE: the Laser Scanner is idle and is ready for a new scan. In case of

a scan request the Sensor Coordinator forwards it to the Laser Scanner.

The Sensor Coordinator enters this state on the initialization or when

the Laser Scanner returns a “Done” notification.

• BUSY: the laser scanner is executing the operations needed for starting

the scan. The Sensor Coordinator enters this state when it has sent a

scan request to the Laser Scanner. If a new scan request is received the

sensor coordinator discards it.

• SCANNING: the laser is scanning and writing the measures on the

Measures Buffer. The Sensor Coordinator enters this state when the
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scan request is sent to the Laser Scanner and it has returned the “Ack”

notification. If a new scan request is received the sensor coordinator

discards it.

The finite state machine presented above allows a client to request a single

scan and can be refined in order to support multiple scan requests. In this

way the client will send a single message to the Sensor Coordinator, asking it

n scans. In turn, the Sensor Coordinator will forward n single scan requests

to the Laser Scanner.

Figure 9.8 illustrates the new finite state machine. It has to be noted

that the Sensor Coordinator policy has been changed without modifying the

functionality offered by the Laser Scanner. Furthermore this version, as well

as the first, is able to satisfy single scan requests.

SCANNING

IDLE
BUSY

scan(from, nSteps, nScans)

"Ack" 

"Done" 
&&

remScans > 0

"Done" 
&&

remScans = 0

Figure 9.8: Sensor Coordinator Finite State Machine, version 2

The sates have the same meaning described above. What change are the

transition rules:

• IDLE→ BUSY: the transition is triggered when the Sensor Coordinator

receives a scan request.

• BUSY → SCANNING: the transition is triggered when the Laser Scan-

ner sends an “Ack” notification to the Sensor Coordinator.
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• SCANNING → BUSY: the transition is triggered when the Laser Scan-

ner sends a “Done” notification to the Sensor Coordinator and the

number of remaining scans (“remScans”) is greater than 0. In this

case the Sensor Coordinator forward a new Scan request to the Laser

Scanner.

• SCANNING→ IDLE: the transition is triggered when the Laser Scanner

sends a “Done” notification to the Sensor Coordinator and there are

not remaining scans to execute.

Figure 9.9 shows the finite state machine that implements the policy 2: if

a request is received while the laser is already scanning the new request will

be queued. Also in this case the states and the functionalities provided by

the laser scanner are the same. What change are the transition rules.

SCANNING

IDLE
BUSY

scan(from, nSteps, nScans)

"Ack" 

("Done" AND remScans > 0)
OR

("Done" AND remScans = 0
AND pendingReq > 0)

"Done"  AND
remScans = 0 AND

 pendingReq = 0

scan(from, nSteps , nScans)

scan(from, nSteps , nScans)

Figure 9.9: Sensor Coordinator Finite State Machine, version 3

The new transitions are described in the following list.

• IDLE→ BUSY: the transition is triggered when the Sensor Coordinator

receives a scan request.
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• BUSY→ BUSY: the transition is triggered when the Sensor Coordinator

receives a scan request. The request is queued.

• BUSY → SCANNING: the transition is triggered when the Laser Scan-

ner sends an “Ack” notification to the Sensor Coordinator.

• SCANNING → BUSY: the transition is triggered when

– the Laser Scanner sends a “Done” notification to the Sensor Co-

ordinator and the number of remaining scans is greater than 0,

or

– the Laser Scanner sends a “Done” notification to the Sensor Coor-

dinator, there are not remaining scans to execute and the number

of pending requests in queue is greater then 0.

• SCANNING→ SCANNING: the transition is triggered when the Sensor

Coordinator receives a scan request. The request is queued.

• SCANNING→ IDLE: the transition is triggered when the Laser Scanner

sends an “Done” notification to the Sensor Coordinator, there are not

remaining scans to execute and there are not pending requests in queue.

The next section will illustrate how these finite state machines have been

modeled through the ASM language.

9.2 The specification of the State Machines

The Sensor Coordinator was implemented using the SCA-ASM formalism.

In the following an ASM-based (abstract) implementation of the Sensor

Coordinator is reported.

9.2.1 The Abstract State Machine in a nutshell

Abstract State Machines (ASMs) are an extension of Finite State Machines

(FSMs) [99] where unstructured control states are replaced by states compris-

ing arbitrary complex data. The states of an ASM are multi-sorted first-order
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structures, i.e. domains of objects with functions and predicates (boolean

functions) defined on them. The transition relation is specified by rules

describing how functions change from one state to the next. Basically, a

transition rule has the form of guarded update “if Condition then Updates”

where Updates is a set of function updates of the form f(t1, . . . , tn) := t that

are simultaneously executed when Condition is true.

There is a limited but powerful set of rule constructors, reported in Table

9.1, that allow to express simultaneous parallel actions (par) of a single agent,

either in an atomic way, Basic ASMs, or in a structured and recursive way,

Structured or Turbo ASMs, by sequential actions (seq), iterations (iterate,

while, recwhile), and sub-machine invocations returning values. Appropri-

ate rule constructors also allow non-determinism (existential quantification

choose) and unrestricted synchronous parallelism (universal quantification

forall). Furthermore, the ASM method supports a generalization where

multiple agents interact in parallel in a synchronous/asynchronous way, Synch-

/Asynch Multi-agent ASMs. In this last model, the predefined variable self is

interpreted by each agent as itself.

Skip rule skip do nothing

Update rule f(t1, . . . , tn) := t update the value of f at t1, . . . , tn to t

Block rule par R1 . . . Rn endpar rules R1 . . .Rn are executed in parallel

Seq rule seq R1 . . . Rn endseq
rules R1 . . .Rn are executed in sequence
without exposing intermediate updates

Conditional
rule

it φ then R1 else R2 endif
if φ is true, then execute rule R1 , other-
wise R2 fires

Iterate rule while φ do R execute rule R until φ is true

Forall rule forall x with φ do R
execute R in parallel for each x satisfying
φ

Choose rule choose x with φ do R(x)
choose an x satisfying φ and then execute
R

Macro call rule R[x1, . . . , xn] call rule R with parameters x1, . . . , xn

Let rule let x = t in R
assign the value of t to x and then execute
R

Table 9.1: ASM rule constructors

Based on [99], an ASM can be defined as the tuple: (header, body, main

rule, initialization).
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The header contains the name of the ASM and its signature1, namely all

domain, function and predicate declarations.

Function are classified as derived functions, i.e. those coming with a

specification or computation mechanism given in terms of other functions,

and basic functions which can be static (never change during any run of

the machine) or dynamic (may change as a consequence of agent actions or

updates). Dynamic functions are further classified into: monitored (only read,

as events provided by the environment), controlled (read and write), shared

(read and write by an agent and by the environment or by another agent)

and output (only write) functions.

The body of an ASM consists of (static) domain and (static/derived)

function definitions according to domain and function declarations in the

signature of the ASM. It also contains declarations (definitions) of transition

rules. The body may also contain definitions of invariants to assume over

domains and functions of the ASM.

The (unique) main rule is a transition rule and represents the starting

point of the machine program (i.e. it calls all the other ASM transition rules

defined in the body). The main rule is closed (i.e. it does not have parameters)

and since there are no free global variables in the rule declarations of an ASM,

the notion of a move does not depend on variable assignment, but on the

machine state.

The initialization of an ASM is a characterization of the initial states. An

initial state defines initial values for domains and functions declared in the

ASM signature.

Executing an ASM means executing its main rule starting from a specified

initial state. A computation of an ASM M is a finite or infinite sequence

S0, S1, . . . , Sn, . . . of states of M , where S0 is an initial state and each Sn+1

is obtained from Sn by firing simultaneously all of the transition rules which

are enabled in Sn.

A lightweight notion of module is also supported. An ASM module is an

ASM (header, body) without a main rule, without a characterization of the

set of initial states, and the body may have no rule declarations. A module is

1Import and export clauses can be also specified for modularization.
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written as an ASM with the keyword asm replaced by the keyword module.

An open framework, the ASMETA tool set [101], based on the Eclipse/EMF

modeling platform and developed around the ASM Metamodel, is also avail-

able for editing, exchanging, simulating, testing, and model checking models.

9.2.2 The ASM-SCA formalism

In addition to the ASM rule constructors, other commands capturing service

behavioral aspects have been provided (see [100] for more details) and formal-

ized in terms of ASMs concepts as further actions offered by the SCA-ASM

language, including constructs to express the control flow of component tasks,

as well as primitive for services orchestration and interaction. Some of these

actions correspond to predefined ASM rules whose AsmetaL implementation

is provided in terms of an external library, named CommonBehavior, to be

imported as part of a SCA-ASM module. In particular, external services are

invoked in a synchronous and asynchronous manner through the following

interaction (or communication) primitives:

• wsend[lnk,R,snd] : Sends data “snd” without blocking to the partner

link “lnk” in reference to the service operation “R” (no acknowledgment

is expected).

• wreceive[lnk,R,rcv] : Receives data in the location “rcv” from the partner

link “lnk” in reference to the service operation “R; it blocks until data

are received. No acknowledgment is expected.

• wsendreceive[lnk,R,snd,rcv] : In reference to the service operation “R,

some data “snd” are sent to the partner link “lnk”, then the action

waits for data to be sent back, which are stored in the receive location

“rcv”; no acknowledgment is expected for send and receive.

• wreplay[lnk,R,snd] : Returns some data “snd” to the partner link “lnk”,

as response of a previous “R” request received from the same partner

link; no acknowledgment is expected.
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These communication primitives rely on a dynamic domain Message

that represents message instances managed by an abstract message passing

mechanism, abstracting, therefore, from the SCA notion of binding. It is

assumed that components communicate over links according to the semantics

of the communication commands reported above and a message encapsulates

information about the partner link and the referenced service name and data

transferred. A data binding mechanism also guarantees a matching between

ASM data types and Java data types, including structured data.

9.2.3 The Sensor Coordinator ASM - Policy 1

The following listings report the ASM implementation of the Sensor Coor-

dinator FSM depicted in figure 9.8 (request management policy 1). To this

purpose, the AsmetaL textual notation is used to write ASM models within

the ASMETA tool-set. Two grammatical conventions must be recalled: a

variable identifier starts with an initial $; a rule identifier begins with “r ”.

Listing 9.1 shows the first rows of the ASM implementation. The import

clauses include the ASM modules of the provided service interfaces (Sensor-

Coordinating and EventObserving) and required interfaces (the LaserScanning

interface) of the component, annotated, respectively, with “@Provided” and

“@Required”. The “@MainService” annotation when importing the SensorCo-

ordinating interface denotes the main service (read: main component agent)

that is responsible for initializing the component state (in the predefined

“r init” rule) and, eventually, for the start-up of the other agents by assigning

programs to them. The signature of the machine contains declarations for:

• References (shared functions annotated with @Reference), which are

abstract access endpoints to services.

• Back references to requester agents (shared functions annotated with

@Backref ).

• Declarations of the following ASM domains and functions, which are

used by the component for internal computation only.
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– Enumeration domain “State” defines the possible control states of

the ASM shown in subsection 9.1.3.

– Variable “ctl state” stores the current control state.

– Variable “paramScan” stores the input parameters of the “request”

function.

– Variable “from” and “steps” store the start position and the

number of measures that compose a scan request received from a

client.

– Variable “remScans” stores the number of remaining scans to do.

– Variable “event” stores the input parameter of the “update” func-

tion.� �
1 module SensorCoordinator

2 import STDL/StandardLibrary

3 import STDL/CommonBehavior

4

5 //@MainService

6 import SensorCoordinating

7 //@Provided

8 import EventObserving

9 //@Required

10 import LaserScanning

11 export ∗
12

13 signature:

14 //@Reference

15 shared laserScanning : Agent −> LaserScanning

16 //@Backref

17 shared clientSensorCoordinating : Agent −> Agent

18 //@Backref

19 shared clientEventObserving : Agent −> Agent

20

21 enum domain State = {IDLE | BUSY | SCANNING}
22 //Internal properties

23 controlled ctl_state : Agent −> State

24 controlled paramScan : Agent −> Prod(Real,Integer,Integer)

25 controlled from : Agent −> Real

26 controlled steps : Agent −> Integer

27 controlled remScans : Agent −> Integer

28 controlled event : Agent −> String� �
Listing 9.1: The ASM implementation header
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The body of the ASM, which starts with the keyword “definitions:”,

includes definitions of services (ASM transition rules annotated with @Ser-

vice) “r request” and “r update”, the definition of the main transition rule

“r SensorCoordinator” (that takes by convention the same name of the com-

ponent module) and the transition rule with the predefined name “r init”,

which is in turn invoked in the initialization rule of the container composite

to initialize the internal state (controlled functions). Another utility rule,

named “r acceptRequest”, has been introduced for modularization purposes

and to advance the control state of the machine according to the arriving

service requests properly.

Listing 9.2 reports the body of the “r request” rule, which is in charge of

requesting a scan to the laser scanner.

� �
1 definitions: //definitions of named ASM transition rules

2 //@Service

3 rule r_request($a in Agent,$from in Real,$steps in Integer, $nScans in Integer)=

4 par

5 ctl_state($a) := BUSY

6 from($a) := $from
7 steps($a) := $steps
8 remScans($a) := $nScans − 1

9 r_wsend[laserScanning($a),”r scan(Agent,Real,Integer)”,($from,$steps)]

10 endpar� �
Listing 9.2: The ”r request” rule

When this rule is called, it executes the following operations in a parallel

way:

1. Sets the state of the ASM to BUSY.

2. Stores the parameters of the requested scan in the variables “from”,

“steps” and “remScans”.

3. Calls the function “scan”, which is provided by the service Laser Scan-

ning.

Listing 9.3 reports the body of the “r update” rule, which is in charge of

receiving the notification from the laser scanner and updating the control

state of the ASM.
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� �
1 //@Service

2 rule r_update($a in Agent, $event in String) =

3 if (ctl_state($a)=BUSY and $event=”Ack”)

4 then ctl_state($a) := SCANNING

5 else if (ctl_state($a)=SCANNING and $event=”Done” and remScans($a)>0)

6 //continue with next scan

7 then par

8 ctl_state($a) := BUSY

9 remScans($a) := remScans($a)−1

10 r_wsend[laserScanning($a),”r scan(Agent,Real,Integer)”,(from($a),steps($a))]

11 endpar

12 else if (ctl_state($a)=SCANNING and $event=”Done” and remScans($a)=0)

13 then ctl_state($a) := IDLE

14 endif endif endif� �
Listing 9.3: The ”r update” rule

When this rule is called, it executes the following operations:

1. If the current control state is BUSY and the notification is an “Ack”:

the rule sets the control state to SCANNING.

2. If the current control state is SCANNING and the notification is a

“Done” and the number of remaining scans is greater than 0, the rule

executes the following operations in a parallel way:

• Sets the control state to BUSY.

• Decrements the number of remaining scans.

• Calls the function “scan”, which is provided by the service Laser

Scanning.

3. If the current control state is SCANNING and the notification is a

“Done” and there are not remaining scans to do, the rule sets the control

state to IDLE.

Listing 9.4 reports the body of the “r acceptRequest” rule. It is in charge

of processing the request received from the clients of the coordinator and the

Laser Scanner. For this reason it receives as input a string, which contains the

request itself. When this rule is called, it sequentially executes the following

operations:
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1. If the client has requested a new scan(r request):

(a) It removes the request from the requests stack (operation “r wrece-

ive”) and stores the input parameters in the variable “paramScan”.

(b) If the parameters are defined (condition “isDef ”) the rule calls the

rule “r request” (see above)

2. If the Laser Scanner has sent a notification (r update):

(a) It removes the request from the requests stack (operation “r wrece-

ive”) and stores the input parameter in the variable “event”.

(b) If the parameter is defined the rule calls the rule “r update” (see

above).� �
1 rule r_acceptRequest ($a in Agent, $r in String) =

2 if (ctl_state($a)=IDLE and $r=”r request(Agent,Real,Integer,Integer)”)

3 then seq

4 //first scan

5 r_wreceive[clientSensorCoordinating($a),”r request(Agent,Real,Integer,Integer)”,paramScan($a)

]

6 if (isDef(paramScan($a)))

7 then

8 r_request[$a,first(paramScan($a)),second(paramScan($a)),third(paramScan($a))]

9 endif

10 endseq

11 else if (not ctl_state($a)=IDLE and $r=”r update(Agent,String)”)

12 then seq

13 r_wreceive[clientEventObserving($a),”r update(Agent,String)”,event($a)]

14 if (isDef(event($a)))

15 then r_update[self,event($a)]

16 endif

17 endseq

18 endif endif� �
Listing 9.4: The ”r acceptRequest” rule

The rule is implemented in such a way that all the scan requests received

while the scanner is already scanning are discarded (that’s what the policy 1

defines).

Listing 9.5 reports the body of the “r SensorCoordinator” rule. It is the

main rule of the agent and is called every times a client requests a service
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offered by the Sensor Coordinator. This rule simply forwards the request to

the “r acceptRequest” rule (see above).

� �
1 //Main agent program

2 rule r_SensorCoordinator =

3 let($r = nextRequest(self)) //Select the next request(if any)

4 in if isDef($r)

5 then r_acceptRequest[self,$r] //Handle the request $r

6 endif

7 endlet� �
Listing 9.5: The ”r SensorCoordinator” rule

Listing 9.6 reports the body of the “r init” rule. It is called in order to

initialize the agent. This rule simply sets the status of the agent to READY,

the control state to IDLE and initializes the scan parameters to 0.

� �
1 //Rule invoked for the startup of the component main agent

2 rule r_init($a in SensorCoordinating) = //to initialize the component state

3 par

4 status($a) := READY

5 ctl_state($a) := IDLE

6 from($a) := 0.0

7 steps($a) := 0

8 remScans($a) := 0

9 endpar� �
Listing 9.6: The ”r init” rule

9.2.4 The Sensor Coordinator ASM - Policy 2

This subsection illustrates how the abstract state machine presented above

can be modified in order to implement the request management policy 2

(figure 9.9).

Listing 9.7 shows the new implementation of the rule “r acceptRequest”.

The rows 1-15 are the same of the previous implementation. A third “if ”

condition was added (rows 16-20) in order to manage the requests received

while the control state is different from IDLE. In fact, when the control state

is not IDLE and the request received is a scan request, the rule sequentially
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executes the following operation:

� �
1 rule r_acceptRequest ($r in String) =

2 if (ctl_state(self)=IDLE and $r=”r request(Agent,Real,Integer,Integer)”)

3 then seq //first scan

4 r_wreceive[clientSensorCoordinating(self),”r request(Agent,Real,Integer,Integer)”,paramScan(

self)]

5 if (isDef(paramScan(self))) //direct service invocation

6 then r_request[self,first(paramScan(self)),second(paramScan(self)),third(paramScan(self))

]

7 endif

8 endseq

9 else if (not ctl_state(self)=IDLE and $r=”r update(Agent,String)”)

10 then seq

11 r_wreceive[clientSensorCoordinating(self),”r update(Agent,String)”,event(self)]

12 if (isDef(event(self)))

13 then r_update[self,event(self)]

14 endif

15 endseq

16 else if (not ctl_state($a)=IDLE and $r=”r request(Agent,Real,Integer,Integer)”)

17 then seq //first scan

18 r_wreceive[clientSensorCoordinating($a),”r request(Agent,Real,Integer,Integer)”,paramScan($a)

]

19 append(pendingRequests($a), (first(paramScan($a)),second(paramScan($a)),third(paramScan($a)

))

20 endseq

21 endif endif endif� �
Listing 9.7: The ”r acceptRequest” rule - Policy 2

• It removes the request from the requests stack (operation “r wreceive”)

and stores the input parameters in the variable “paramScan”.

• It puts the parameters in a queue called “pendingRequests” (operation

“append”). This queue is defined in the header of the state machine

and is the equivalent of an array, which stores triplets (a real and two

integers: the three parameters of a scan request).

All what is needed to queuing the scan requests is defined in this rule.

Indeed, as mentioned above, this is the rule that implements the request

management policy.

The changes in the rule “r update” are instead necessary in order to

manage the requests queue. They are reported in the Listing 9.8. The rows
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1-10 are the same of the previous implementation. The third “if ” condition

was modified and split in two new conditions by adding a control on the

number of pending requests. The following list describes the rows 11-20.

� �
1 rule r_update($a in Agent, $event in String) =

2 if (ctl_state($a)=BUSY and $event=”Ack”)

3 then ctl_state($a) := SCANNING

4 else if (ctl_state($a)=SCANNING and $event=”Done” and remScans($a)>0)

5 //continue with next scan

6 then par

7 ctl_state($a) := BUSY

8 remScans($a) := remScans($a)−1

9 r_wsend[laserScanning($a),”r scan(Agent,Real,Integer)”,(from($a),steps($a))]

10 endpar

11 else if (ctl_state($a)=SCANNING and $event=”Done” and remScans($a)=0 and lenght(

pendingRequests($a))>0)

12 then let($tmp=first(pendingRequests($a))) in

13 seq

14 pendingRequests($a) := excluding(pendingRequests($a),$tmp)

15 r_request[($a),first($tmp),second($tmp),third($tmp)]

16 endseq

17 endlet

18 else if (ctl_state($a)=SCANNING and $event=”Done” and remScans($a)=0 and length(

pendingRequests($a))=0)

19 then ctl_state($a) := IDLE

20 endif endif endif endif� �
Listing 9.8: The ”r update” rule - Policy 2

1. If the current control state is SCANNING and the notification is a

“Done” and there are not remaining scans to do and the number of

pending requests is greater than 0: the rule sequentially

(a) removes the first request from the queue,

(b) calls the rule “r request” by passing the parameters retrieved from

the queue.

2. If the current control state is SCANNING and the notification is a

“Done” and there are not remaining scans to do and there are not

pending requests: the rules sets the control state to IDLE
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9.3 The case study implementation

The scenario presented above was implemented in SCA and ASM. Figure

9.10 illustrates the SCA Sensor Composite, which represents the composite

component defined in figure 9.6. The clients are not present in this diagram,

but they can interact with the Sensor Coordinator and with the Measures

Buffer through the services promoted by the composite. In particular a client

could request a scan by means of the service “Sensor Coordinating” and

could access the Measures Buffer by means of the service “Measures Buffer

Reading”.

• Component 1: Measures Buffer

– Measure Buffer Writing: it is used for writing a measure on the

buffer (provided).

– Measure Buffer Reading: it is used for reading a measure from the

buffer (provided).

Figure 9.10: The Sensor Composite
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• Component 2: Laser Scanner

– Laser Scanning: it is used for starting a scan. The scan opera-

tion provided by the service requires two parameters: from and

numOfSteps (provided).

– Measure Buffer Writing (required).

• Component 3: Sensor Coordinator

– Sensor Coordinating: it is used in order to request a number of

scans. The scan operation provided by the service requires three

parameters: from, numOfSteps, and numOfScans (provided).

– Event Observing: it is used in order to notify the coordinator when

the scan process starts and when it finishes (provided).

– Laser Scanning (required).

9.3.1 The interfaces and the data structures

The interfaces of the services and the used data structures are reported in

the listing 9.9. To be noticed that the interfaces of the Sensor Coordinator

are defined both in Java and ASM. Indeed, despite the Sensor Coordinator

is implemented with ASM, its interfaces have been defined also in Java

because in this way the Java interpreter can recognize them and in this way

it is possible to can call the Sensor Coordinator services from a component

implemented in Java without syntax errors.

In order to manage the notification received from the Laser Scanner the

Sensor Coordinator also implements the interface reported in the listing 9.10.

So far it is used as a Service in order to simulate a callback, because the

callbacks are not yet supported in the SCA-ASM Eclipse plugin. It will be

used as a SCA Callback as soon as this further feature will be implemented

and supported.

The ASM definitions of the sensor coordinator provided interfaces are

reported in the listing 9.11 using the AsmetaL notation. They are ASM

modules containing only declarations of business agent types, declared in
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� �
1 public interface MeasuresBufferReading {
2

3 public LaserScan getScan();
4 }
5

6 public interface MeasuresBufferWriting {
7

8 public void writeMeasure(LaserMeasure measure);
9 }

10

11 public interface LaserScanning {
12

13 /∗∗
14 ∗ @param from: point from which the laser starts the scan
15 ∗ @param numOfSteps: number of steps of the scan ∗/
16 @OneWay

17 public void scan(double from, int numOfSteps);
18 }
19

20 public interface SensorCoordinating {
21

22 /∗∗
23 ∗ @param from: point from which the laser starts the scan
24 ∗ @param numOfSteps: number of steps of the scan
25 ∗ @param numOfScans: number of scans required ∗/
26 @OneWay

27 public void request(double from, int numOfSteps, int numOfScans);
28 }� �

Listing 9.9: The Java interfaces of the components

� �
1 public interface EventObserving {
2

3 /∗∗
4 ∗ @param event: it describe the type of event.
5 ∗ For the laser scanner valid values are ”Ack” and ”Done”
6 ∗/
7 public void update(String event);
8 }� �

Listing 9.10: The Java EventObserving interface
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� �
1 //@Remotable
2 module SensorCoordinating

3 import STDL/StandardLibrary
4 import STDL/CommonBehavior
5 export ∗
6

7 signature:
8 // the domain defines the type of this agent
9 domain SensorCoordinating subsetof Agent

10 // out is a function that implements the provided service
11 out request: Prod(Agent,Real,Integer,Integer) −> Rule

12 definitions:
13

14

15 //@Remotable
16 module EventObserving

17 import STDL/StandardLibrary
18 import STDL/CommonBehavior
19 export ∗
20

21 signature:
22 domain EventObserving subsetof Agent

23 out update: Prod(Agent,String) −> Rule

24 definitions:� �
Listing 9.11: ASM definition of the Sensor Coordinating interface

terms of subdomains of the predefined ASM Agent domain, and of business

functions, declared as parameterized ASM out functions.

9.4 Discussion

This chapter has presented, by means of a case study, an approach regarding

the coordination of functionalities in the context of a robotics application.

The approach is based on SCA and ASM and has the goal of demonstrating

how the Computation and the Coordination concerns can be decoupled by

separately modeling them.

The use of two different frameworks for modeling the two concerns (SCA for

computation and ASM for coordination) improves the level of flexibility and

reusability. Thanks to this orthogonal separation, it was possible to implement

two different coordination policies without modifying the implementation of

the services offered by the Laser Scanner. In the same way it is possible to

modify the implementation of the Laser Scanner services without modifying
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the coordination state machine.

Moreover ASM allows automatic validation and verification of the correct-

ness and reliability of single components taken in isolation. It also consents

runtime monitoring of the components and self-adaptation.

These positive features, the results demonstrated through the case study,

the level of maturity of these frameworks and their significant spread in other

domains such as the web services, support and advocate the thesis according

to which the integration of SCA and ASM promises good results also in the

robotics field.





10
Differential Constraints Modeling Language

Differential equations are widely used for modeling kinematics and dynamics

constraints of mobile robots, for example in simulation and sampling-based

path planning algorithms. Differential models express relations between

configuration variables. The possible states of a mobile robot are represented

in the state space X and each state represents a particular configuration

of the robot. For wheeled mobile robots each state ~x ∈ X is ~x = (x, y, θ),

where x and y represent the position of the robot in the plane and θ is its

orientation. In the same way it is possible to define the action space U , which

is the set of all the possible actions on all the possible states (an action is a

response of the robot, which changes its current state, to an external input).

Thus a differential model can be represented as ~̇x = f(~x, ~u) where ~x ∈ X
is the starting state, ~u ∈ U is the action applied to the model and f is a

function, called state transition function, which defines the relation between

state space and action space [102, Ch. 13]. The results are expressed in terms

of velocities ~̇x and the outcome of their integration represents the future

states that satisfy the kinematics constrains.

These models are widely used in simulation algorithms (which, given the

starting configuration and the action vector, compute the final configuration

of the robot) and sampling-based motion planning algorithms (that sample

collision free configurations, which need to be compatible with the differential

constraints, for computing the path toward the goal). These algorithms, in

order to compute final configurations, have to solve the differential equations

181
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and this is typically done by means of solvers, which use numerical approx-

imation techniques. However solvers require that differential equations are

implemented in the source code fulfilling specific interfaces, and implementing

these equations is usually error prone and not trivial. Another problem is

that differential models are usually hard-coded in the implementation of

these algorithms, hence the algorithm implementation is hard-coupled to the

specific robot.

In order to achieve higher flexibility, modularity and easier extensibility

with respect to the current situation and to solve the problems presented

before, a higher level representation of those models is needed. Domain

specific languages (DSLs) provide this higher level representation. DSLs are

simple formal languages, usually declarative, used to represent domain specific

knowledge using some sort of syntax. DSLs let you describe easily a scenario

in a specific domain.

The syntax and semantic of these DSLs are designed explicitly to describe

only the knowledge of a specific domain and thus DSLs provide an advantage

in terms of expressiveness and ease of use compared to general purpose

languages for the specific domain. They can also improve productivity and

maintenance costs. Conversely DSLs are usually less expressive than general-

purpose programming languages out of their domain. More details on DSLs

can be found in [103] and [104].

DSLs have also other advantages over general-purpose languages while

expressing knowledge in the specific domain:

• being less expressive and complex than general purpose languages, DSLs

can be used also by people that are not expert programmers;

• manual implementation of the model can require experience in computer

programming and it is error prone while you can usually generate code

from a DSL document in an in automated way;

• the model itself can be used as documentation;

• ease the communication between programmers and domain experts;
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• ease the description of the scenario;

• can decouple the representation of the model from the technologies and

interfaces used in the implementation.

This chapter presents DCML (Differential Constraints Modeling Language)

a Domain Specific Language that allows the description of differential models

with a high level of abstraction from implementation details. Moreover DCML

provides developers with a model to text transformation for generating the

code that implements the differential equations starting from the differential

model, which describes the relations between state space and action space

of a specific robot. This implementation can be used by motion planning

algorithms in order to simulate the behavior of the robot itself.

The development of DCML, as well as the development of the tools

described in the chapter 4, has followed the Model Driven Engineering (MDE)

approach. A goal of this research is indeed demonstrating that the MDE can

be applied with good results also to the representation of differential models.

10.1 Related works

Despite the research described in this chapter focus only on the use of

differential models in sampling-based motion planning algorithms, differential

models are widely used also in other robotics fields. They can be used to

describe several kinds of robots: [102] and [105] present differential models of

some wheeled mobile robots under kinematics and dynamics constraints, while

[106] shows a model of an hexapod robot. An extension of differential models,

that can take into account also dynamics constraints, are phase-space models

that consider also accelerations and can then be described as ẍ = f(ẋ, x, u).

Each second order model can be converted in a first-order model, which is a

differential model, using a phase space, that has more dimension than the state

space of the second order model. In this way it is possible to represent, using

differential models, also dynamic constraints. In the same way a kth-order

model can be expressed as a differential model using an adequate phase space.
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Thus differential models can be used for motion planning under kinematics

and dynamics constraints, as shown in [102, Ch. 14].

A first way of defining differential models with a higher level of abstraction

than hard-coded solutions is using Simulink1. It provides developers with

a toolchain for defining, through block diagrams, differential models and

generating from these diagrams C and C++ code that implements them. This

approach is not flexible enough because it does not allow the generation of code

in other programming languages and also because it does not allow developers

to customize the generated code, in terms of interface and optimization.

Another approach is using a dedicated Domain Specific Language. Lit-

erature presents, up to now, a few DSLs to describe differential equations.

The MyFEM language, presented in [107], is a DSL for the definition of

partial-differential equations using a subset of the Python language. It allows

the generation of C++ code that implements the model defined in MyFem

but it has not got an IDE. Scalation [108] is an embedded DSL defined

over the Scala programming language, and it has a package that allows the

representation of systems of differential equations. These approaches use

subsets of existing programming languages to define the DSLs. This has some

advantages, such as less learning time, but it has also the big drawback that

the resulting DSL is too close to the general purpose language and thus it

has less abstraction than a dedicated DSL and requires too much effort to

be used by programmers that are not expert. Another drawback of both

approaches is that the syntax used to express differential equations is too far

from the mathematical formalism because it is tied to the syntax of native

programming languages.

Other approaches, such as the one in [109], which defines a specification

language for partial differential equations on a union of rectangles, or [110],

which defines differential equations using the arrow notation, are quite complex

and difficult in order to be used as an effective aid to developers. A common

disadvantage of all these approaches is that they are tied to work only with a

fixed set of numerical solvers.

Given the fact that existing solutions for representing differential equations

1Simulink - www.mathworks.com/products/simulink/
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are too complex or do not offer enough flexibility in the code generation

phase, a new DSL for representing differential models has been designed and

developed. DCML offers two advantages with respect to existing solutions.

Firstly the syntax used to describe differential equations is close to the

mathematical one, and secondly DCML is not tied to work with a fixed set

of differential equations solvers.

10.2 Differential Constraints Modeling Lan-

guage

DCML allows users to describe constraints that affect mobile robots by means

of differential models2. This allows users to focus on the description of the

differential equations.

A simple model, taken from [102], that can be used to describe the

constraints of a differential drive (a mobile robot with two independent

wheels) is presented in the system of equations 10.1.

ẋ =
r

2
(ul + ur)cosθ

ẏ =
r

2
(ul + ur)sinθ (10.1)

θ̇ =
r

L
(ur − ul)

The state vector (x, y, θ) represents the cartesian position of the robot while

the action vector u = (ul, ur) represents angular velocities of the wheels, r is

the radius of each wheel while L is the distance between the two wheels.

10.2.1 The grammar

Listing 10.1 shows the DCML document representing the differential drive

presented above. A document that conforms to DCML can describe several

models and for each model the user can specify:

2The DCML Eclipse Tool and some example are available at http://robotics.unibg.
it/software/dcml/.

http://robotics.unibg.it/software/dcml/
http://robotics.unibg.it/software/dcml/
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• The action space (keyword ACTION). In the example two actions are

specified: ul and ur.

• The dimensions of the configuration space (keyword CONFIG). In the

example each configuration can be expressed in terms of x, y, θ.

• The parameters of the model (keyword PARAM). In the example r

and L.

• The state transition function of the model, which can be expressed by

means of differential equations in an understandable way.

• Some temporary variables, which can be used to ease the definition of

differential constraints (keyword VAR).

• Some constant values, different from the predefined ones, such as π and

e (keyword CONST).

• The package (or namespace) in which the source code will be created

(keyword PACKAGE). The example specifies that the source code has

to be created in the package robotics.models.

• If the model definition isn’t expressive enough, further comments can

be added with a JavaDoc style notation.

� �
1 BEGIN DifferentialDrive

2 PACKAGE : robotics.models;

3 ACTION : u_l, u_r;

4 PARAM : L, r;

5 CONFIG : x, y, theta;

6

7 d(x) = r / 2 ∗ (u_l + u_r) ∗ cos(theta);

8 d(y) = r / 2 ∗ (u_l + u_r) ∗ sin(theta);

9 d(theta) = (r / L) ∗ (u_r − u_l);

10 END;� �
Listing 10.1: Differential Drive model
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While actions, configurations and differential equations are mandatory,

the other elements are useful only for describing more complex models (see

Section 10.3).

The grammar of DCML, which is described in Listing 10.2, is presented

below. A grammar has four main components, [111]:

1. a set Σ of terminals, which are the basic symbols that form valid

instructions of the developed language;

2. a set V of non-terminals, that are syntactic variables that represent set

of strings;

3. a non-terminal s ∈ V that acts as start symbol;

4. a set P of productions, that define how terminals and non-terminals

can be combined in order to generate valid strings.

For the DCML grammar:

1. The set Σ is equal to {“\**”, “*\”, “BEGIN”, “END”, “;”, “PACK-

AGE”, “:‘”, “ACTION”, “PARAM”, “CONST”, “CONFIG”, “VAR”,

“,”, “+”, “-”, “*”, “\”, “(”, “)”, “d(”, ID, PCKG ID, NUM, COM-

MENT} where ID represents an alphanumerical identifier, NUM is a

numeric literal and PCKG ID is a package identifier.

2. The set V is composed by {modelList, model, package, actions, params,

constants, configurations, variables, varList, constList, varDef, constDef,

assignments, assignment, var, expr, term, factor, paramList}.

3. The start symbol is modelList.

The DCML grammar is expressed using the Extended Backus-Naur Form

(EBNF) [112] that describes each production in the form A→ f(V1, . . . , Vn, α1,

. . . , αm) where A, V1, . . . , Vn ∈ V , α1, . . . , αm ∈ Σ and f is a function that

concatenates symbols using regular expressions. A production means that the

non-terminal on the left hand side can be replaced by the regular expression

on the right hand side of the → operator.
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The first production (row 1) involves the modelList terminal, and means

that a document of DCML must contain at least one model. The second

production describes the syntax of each model, it must be enclosed between a

“BEGIN” instruction and an “END” instruction and the ID must be unique

in the document. Symbols enclosed between square brackets are optional. In

the differential drive example the ID is DifferentialDrive.

� �
1 modelList −> model(model)∗
2 model −> [``/∗∗” COMMENT ``∗/”] BEGIN ID [package] actions [params] [constants]

configurations [variables] assignments END``;”

3 package −> PACKAGE ``:” PCKG ID``;”

4 actions −> ACTION ``:” varList ``;”

5 params −> PARAM ``:” varList ``;”

6 constants −> CONST ``:” constList ``;”

7 configurations −> CONFIG ``:” varList ``;”

8 variables −> VAR ``:” varList ``;”

9 varList −> varDef (``,” varDef)∗
10 constList −> constDef (``,” constDef)∗
11 varDef −> ID

12 constDef −> ID ``=” (``+” | ``−”)NUM

13 assignments −> assignment (assignment)∗
14 assignment −> var ``=” expr``;”

15 var −> ID | ``d(” ID ``)”

16 expr −> term ( (``+” | ``−”)term )∗
17 term −> factor ( (``∗” | ``/”)factor )∗
18 factor −> NUM | ``(” expr ``)” | var[``(”paramList``)”]

19 paramList −> expr(``,” expr)∗� �
Listing 10.2: DSL Grammar

The productions at rows 4,5,7,8 define that, after the specific keywords,

a list of variable declarations is needed. These lists represent, respectively,

actions, parameters, configurations, and temporary variables. Each variable

list, represented by the non-terminal varList, is made up of one or more

variable declarations (row 9), each one consisting in an ID, as shown in the

production at row 11, that must be unique in the model.

In a similar way the production whose head consists of non-terminal

constants (row 6) defines that, after the keyword “CONST”, a list of constant

declarations constList (row 10) is needed. Each constant declaration is made

up of an ID, unique in the model, and a numeric literal, as shown in the
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production 12.

The non-terminal assignments can be replaced by a list of differential

equations. Each equation is defined as var = expr, where var is a non-terminal

that represents, as shown in production 15, either a differential variable of

the first order, or an already defined identifier. An algebraic expression,

represented by expr, is composed by predefined functions, such as sin or cos,

parenthesized expressions, numeric literals, predefined constants, such as π, or

instances of the var non-terminal and also the usual mathematical operators

+,−, ∗, /.

10.2.2 From model to code

Once a model has been written according to the grammar described above, it

can be validated and transformed in the code that implements the differential

equations. The process of validating the model and generating the source

code is depicted in figure 10.1.

DSL
Model Parser

AST
Representation Translator

Generated
Code

Figure 10.1: Validation and Code generation process

It can be divided in two phases. During the first one, the parsing phase,

the document is validated. The parser checks that the document is correct,

both from a syntactic point of view (it must respect the syntactic rules) and

also from a semantic point of view (e.g. the parser checks that the document

does not contains undeclared variables, non unique identifiers or function

invocations with a wrong number of parameters). In this phase the parser

builds, starting from the document, the Abstract Syntax Tree (AST) that is

an intermediate representation of the model. The AST is a tree representation

of the syntactic structure of the model enriched with some useful semantic

information elaborated during the parsing phase. Figure 10.2 shows a part

of the AST that is created starting form the first differential equation of the

differential drive example.
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Assignment

LeftHandSide

FirstOrderDifferentialVariable [ x , CONFIGURATION ]

RightHandSide

ComplexExpression

SingleVariableExpression

Variable [ r , PARAMETER ]

Operator [ / ]

Literal [ 2 ]

Operator [ * ]

ParenthesizedEspression

SingleVariableEspression

Variable [ u_l , ACTION ]

Operator [ + ]

SingleVariableEspression

Variable [ u_r , ACTION ]

Operator [ * ]

FunctionInvocation

Function [ cos , FUNCTION ]

Params

Variable [ theta , CONFIGURATION ]

Figure 10.2: A snippet of an AST that describes a differential equation
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Taking the AST as input, the second phase (i.e. the translation phase)

creates the code that implements the differential model by means of a general

purpose programming language. This can be done by simply visiting the

AST, because it is a tree structure bearing all the information needed for the

translation.

The decision of generating an intermediate representation by means of

ASTs, instead of performing directly the translation during the parsing phase,

has some advantages:

• allows the validation of the model without performing the translation;

• by decoupling the translation form the parsing phase it is possible to

develop and use several translators, which target several programming

languages and/or numerical solvers, without modifying the parser. This

is possible because the parsing phase is completely separated by details

regarding the generation of the code.

Despite this solution is a bit less efficient than performing the translation

during the parsing phase, it has great advantages in terms of extensibility

and flexibility.

The Java code generated from the differential drive example is shown in

Listing 10.3. This code is written to be compatible with numerical solvers

provided by the Apache Commons Math library3.

The generated class implements the interface IFirstOrderModel, which

extends the interface FirstOrderDifferentialEquation defined in the Apache

Math library. It defines the following three methods:

1. computeDerivatives, called by the solver, contains the definition of the

state transition function (the state ~x is mapped on the array y, while

the velocities ~̇x are mapped on yDot);

2. setParameter, which can be used to set the parameters of a specific

robot;

3Apache Commons Math - http://commons.apache.org/math/
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� �
1 package robotics.models;
2

3 public class DifferentialDrive implements IFirstOrderModel {
4

5 private double L, r, u_l, u_r;
6

7 public void setAction(double[] actions) {
8 if (actions.length != 2)
9 throw new IllegalArgumentException(``Actions must have size 2.'');

10 u_l = actions[0];
11 u_r = actions[1];
12 }
13 public void setParameters(double[] parameters) {
14 if (parameters.length != 2)
15 throw new IllegalArgumentException(``Parameters must have size 2.'');
16 L = parameters[0];
17 r = parameters[1];
18 }
19 public void computeDerivatives(double t, double[] y, double[] yDot) throws

DerivativeException{
20 yDot[0] = r / 2 ∗ (u_l + u_r) ∗ java.lang.Math.cos(y[2]);
21 yDot[1] = r / 2 ∗ (u_l + u_r) ∗ java.lang.Math.sin(y[2]);
22 yDot[2] = (r / L) ∗ (u_r − u_l);
23 }
24 }� �

Listing 10.3: Differential Drive implementation

3. setAction, which can be used to set the actions.

The methods setParameter and setAction are called by the algorithm that

uses the differential model (e.g. path planner or simulator).

10.2.3 Implementation details

The grammar of DCML was defined by means of AntLR3 [113]. It was used

also for the definition of the semantic actions and for building the AST tree.

AntLR is a parser generator that reduces the time and effort needed for

building and maintaining language processing tools.

One of the problems of MDE is that developers, in order to use MDE

techniques, usually need tools that support them in the management and

development of models. The Xtext framework [114] was used for creating

this tool. Xtext provides a simple way for creating textual DSLs and to

automatically generate a full-featured Eclipse Text Editor from the grammar.
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The grammar implemented in the Xtext editor is the same used for the parser,

without semantic actions.

The parser and the editor were separately implemented for two reasons.

First, thanks to AntLR it is possible to have a better control with respect to

Xtext, on both the AST creation phase and on the definition of the syntax

and the semantic of the language. Second, by using AntLR the developed

tool can be used in a stand-alone way or can be integrated in others IDEs.

Xtext was used in order to integrate DCML in the Eclipse IDE. This

integration gives to developers useful features such as auto-completion and

syntax highlighting, while expressing the grammar using AntLR give us the

power of expressing complex semantic rules.

In order to integrate the parser in the editor a new button that allows the

invocation of the parser was defined in the Eclipse toolbar. The parser takes

as input the model created by the user and validates it. Then, in the case

that the model is correct, the Java translator is invoked. The translator takes

the AST produced by the parser and translates it into the Java class that

implements the differential equations of the model and conforms to the solver

required interfaces.

10.3 Case study

Using DCML it is possible to describe models of simple robots, such as the

differential drive described in Section 10.2, or models of more complex robots

like BART.

BART is an omnidirectional holonomic wheeled robot, developed by the

Software for Experimental Robotics Lab (SERL) at the University of Bergamo.

It is made up of two steering blocks and two free wheels. Each block is a

differential drive and the rotational joint is not on the axis of its wheels. The

mechanical structure of the robot is presented in figure 10.3. BART is slightly

similar to the robots presented in [115] and [116].

While modeling the kinematics of BART by defining the rigid bodies that

made it up can be quite difficult, modeling the general kinematics of the

robot can be done quite easily using differential models, and thus by means
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Figure 10.3: The BART robot

of DCML, as shown in Listing 10.4.

The BART configuration space is described in terms of the variables

x, y and theta (cartesian position and the orientation of the center of the

robot), the variables x front, y front and phi front (cartesian position and

orientation of the joint that connects the base of the robot to the frontal

differential drive, related to the absolute reference system), and the variables

x rear, y rear and phi rear (position and orientation of the rear steering

block).

The parameters of the model are tt wheel half axis, that represents the

� �
1 BEGIN Bart

2 PACKAGE : robotics.models;
3 ACTION : left_f_s, right_f_s, left_r_s, right_r_s;
4 PARAM : tt_wheel_half_axis, tt_wheel_radius, tt_steer_offset;
5 CONFIG : x, y, theta, x_front, y_front, phi_front, x_rear, y_rear, phi_rear;
6 VAR : k;
7

8 k = tt_steer_offset / tt_wheel_half_axis;
9

10 d(x_front) = (tt_wheel_radius /2) ∗ (((cos(phi_front) − k ∗ sin(phi_front)) ∗ right_f_s) + ((cos
(phi_front) + k ∗ sin(phi_front)) ∗ left_f_s));

11 d(y_front) = (tt_wheel_radius /2) ∗ (((sin(phi_front) + k ∗ cos(phi_front)) ∗ right_f_s) + ((sin
(phi_front) − k ∗ cos(phi_front)) ∗ left_f_s));

12 d(phi_front) = (tt_wheel_radius / (2 ∗ tt_wheel_half_axis)) ∗ (right_f_s − left_f_s);
13

14 d(x_rear) = (tt_wheel_radius /2) ∗ (((cos(phi_rear) − k ∗ sin(phi_rear)) ∗ right_r_s) + ((cos(
phi_rear) + k ∗ sin(phi_rear)) ∗ left_r_s));

15 d(y_rear) = (tt_wheel_radius /2) ∗ (((sin(phi_rear) + k ∗ cos(phi_rear)) ∗ right_r_s) + ((sin(
phi_rear) − k ∗ cos(phi_rear)) ∗ left_r_s));

16 d(phi_rear) = (tt_wheel_radius / (2 ∗ tt_wheel_half_axis)) ∗ (right_r_s − left_r_s);
17

18 x = (x_front + x_rear)/2;
19 y = (y_front + y_rear)/2;
20 theta = atan2((y_front−y_rear),(x_front−x_rear)) + (pi / 4);
21 END;� �

Listing 10.4: BART model



10.3 Case study 195

half length between the wheels in one of the differential drives, tt wheel radius,

that is the radius of each wheel of the steering blocks, and tt steer offset,

that is the distance between the steering axis and the axis of the wheels of

the robot. The variable k was introduced for representing the ratio between

tt steer offset and tt wheel half axis to simplify the writing of the differ-

ential equations. The actions accepted by the robot are the values left f s

and right f s, which represent the angular speeds of left and right wheels

of the frontal steering block, and the values left r s and right r s, which

represent the angular speeds of left and right wheels of the rear differential

drive.

The differential model of BART can be divided in three parts. The first

one, that involves the x front, y front and phi front variables, expresses

the differential equations needed to compute the position of the joint of the

front steering block. It is an extension of the differential model for a standard

differential drive that considers also the fact that the rotational joint is not

on the axis of the differential drive. The second part, involving the variables

x rear, y rear and phi rear, is quite similar to the first one but it is related

to the rear steering block. The last part of the model, involving the variables

x, y and theta, computes the position of the center of the BART robot. This

part is not made up of differential equations because these values can be

computed with algebraic equations from the values of the two steering blocks.

A Java framework that implements some well known algorithms for

sampling-based path planning was implemented and integrated with DCML.

All the provided algorithms depend on the model of the robot under simula-

tion. For this reason they were designed in such a way that the algorithm

implementation and the differential model are clearly separated. The differen-

tial model is thus an input parameter. Using DCML it is possible to modify

the implementation of the differential model without manually changing any

line of the source code. The only steps required are:

1. modify the DCML document,

2. regenerating from it the new source code.
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This is possible thanks to the DCML to Java translator that was devel-

oped and that, taken as input the AST of the model, creates the class that

implements the model itself. The integration between the framework and

DCML was tested with two robot models: the differential drive and BART.

A screenshot of a planning result is depicted in figure 10.4.

Figure 10.4: The integration of DCML with a Path Planning algorithm

10.4 Discussion

This chapter presented the Differential Constraints Modeling Language

(DCML), a Domain Specific Language that allows the description of dif-

ferential models with a high level of abstraction from implementation details.

Using DCML users can focus only on modeling the state transition function

of the robot. The source code can be then automatically generated by trans-

lators optimized according to both the destination programming language

and the solver required interface. In this way the details related to the model

implementation (e.g. the numerical solver used to solve the equations) can

be completely hidden to the user and the task of creating optimized code can
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be delegated to the writer of the translator. The presented approach allows

developers to define new translators in order to generate code optimized

accordingly to real-time and computational requirements.

This work shows that MDE can be used with good results in specific areas,

such as the representation of differential models, in which the representation

of the knowledge can be formalized in a defined model. The integration of

the generated models in the path planning framework demonstrates that the

technique can have useful application also in a robotics environment.
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Conclusions

In this thesis I presented the research carried out during my PhD, which

focused on investigating new approaches for the development of flexible

component-based robotics software systems.

Chapter 2 presented a new contribution to the analysis of the variability

that characterizes the robotics domain. In particular it describes how the

variability of situatedness, embodiment, intelligence and software framework

influences the design of robotics software systems.

In the next chapters I focused on the modeling and the resolution of

the variability (part I) and on new approaches for the development flexible

systems (part II).

The first part presented a Model-Driven Development Process for modeling

and resolving the variability in component-based robotic systems. The pro-

posed approach builds on the concept of Component Framework and is based

on the definition of three sets of models and meta-models for representing

different concerns. The Template System Model describes the architecture of a

component-based software product line and explicitly represents the variation

points, the Feature Model represents the variability in system functionalities,

and finally the Resolution Model waves the first two models and describes

how the variability should be resolved at deployment-time. Thanks to the

orthogonality of the Template System Model and of the Feature Model, the

system integrator is not required anymore to master software engineering

concepts and technologies.

199
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The proposed approach was applied for defining a set of flexible component-

based software architectures for the robust navigation. These architectures

compose the Robust Navigation Software Product Line. Unlike other robotics

software libraries, the presented architectures are designed by taking into

account the variability in robotic system requirements and the commonalities

in existing open source libraries for mobile robots. The resulting Robust

Navigation component-based product line can be easily configured according

to the requirements of specific applications by using the models and the tools

that I have developed.

Future works will try to improve the presented development process by

addressing important robotics requirements like QoS awareness and runtime

reconfiguration. A major reason for the limited ability of existing robotic

systems to exhibit both high robustness and high versatility is the lack of mech-

anisms that allow the robot to trade between conflicting QoS requirements

(i.e. performance vs. long-term continuous operation, completeness vs. de-

pendability) when the actual operational context changes (tasks, environment,

resources). These mechanisms would allow the robot to dynamically recon-

figure its own control and coordination system in order to maximize overall

QoS according to the actual operational context and available resources.

The exploitation of the approach presented in this thesis will allow the

development of dynamically adaptive robotic systems, where robotic engineers

can define several variation points (resources, algorithms, control strategies,

coordination policies, cognitive mechanisms and heuristics, etc.) and depend-

ing on the context, the system dynamically chooses suitable variants to realize

those variation points. These variants may provide better quality of service

(QoS), offer new services that did not make sense in the previous context, or

discard some services that are no longer useful.

Another topic that will be addressed in future works is the generation of

configured system models that describe hybrid architectures, where compo-

nents implemented by means of different software frameworks interact for

building distributed and complex systems.

The first part of this document also described in details the concept of

refactoring, which is one of the phases of the development process that aims
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to refactor existing object oriented legacy code. The result of the refactoring

is a flexible and software framework independent software library, which can

be easily encapsulated in reusable components. In this direction the chapter

5 presented a set of guidelines and refactoring patterns and, by means of a

case study, it demonstrated how they have been applied for refactoring the

CoPP library.

In the second part of the thesis each chapter contains a “Discussion”

section, which deeply elaborates the conclusions about the research and

the problems addressed in that chapter. For this reason in the following

paragraphs I only summarize the research topics.

In the seventh chapter I presented JOrocos, a software library that, by

resolving a set of architectural mismatches, makes possible the cooperation

between Service Oriented Architectures (SOA) and Data Flow Oriented

Architectures. In particular it focuses on SCA and Orocos, the first a compo-

nent based SOA and the second a hard real-time component based robotics

framework.

In order to support JOrocos and the development of hybrid systems (i.e.

systems where SCA/Java and Orocos/C++ component interact), in the eighth

chapter I documented a performance comparison between Java and C++.

This study shows that Java can be considered nowadays an alternative to C++,

at least for the development of high-level and non real-time functionalities

In the ninth chapter I faced the problem of separating different concerns

in the design of component based robotics systems. In particular I presented

an approach based on SCA and ASM, which has the goal of demonstrating

how the Computation and the Coordination concerns can be decoupled by

separately modeling them. Thanks to this orthogonal separation, it is possible

to implement different coordination policies, which orchestrate the execution

of the services provided by the various components of the system, without

having to modify the implementation of the services themselves.

Finally in the tenth chapter I demonstrated how a domain specific lan-

guage can be designed and used for describing robot differential models and

automatically generate the source code that implements them. The chapter

shows how, thanks to this approach, it is possible to implement algorithms
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(e.g. sample-base path planners) that are not hard-coupled to a specific robot

model and are hence more flexible.
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