
Master Thesis

Best Practice Algorithms in 3D Perception and Modeling

Sebastian Blumenthal

A thesis submitted to the
University of Applied Sciences Bonn-Rhein-Sieg

for the degree of
Master of Science in Autonomous Systems

Referee and Tutor: Prof. Dr. Erwin Prassler1

Referee: Dipl.-Inf. Jan Fischer2

external Referee: Dipl.-Inform. Walter Nowak3

Submitted: March 2010

1University of Applied Sciences Bonn-Rhein-Sieg, Sankt Augustin, Germany
2Fraunhofer-Institut für Produktionstechnik und Automation (IPA), Stuttgart, Germany
3GPS Gesellschaft für Produktionssysteme GmbH (GPS), Stuttgart, Germany

I, the undersigned below, declare that this work has not previously been submitted to this or any

other university, and that unless otherwise stated, it is entirely my own work.

DATE Sebastian Blumenthal

ABSTRACT

A robot needs a representation of its environment to reason about and to interact with it. Different
3D perception and modeling approaches exist to create such arepresentation, but they are not
yet easily comparable. This work tries to identifybest practicealgorithms in the domain of 3D
perception and modeling for robotic applications. The goalis to have a collection of refactored
algorithms that are easily measurable and comparable. To achieve this goal, software engineering
techniques are applied to decompose existing algorithms into atomic elements.

A state-of-the-art survey identifies common data-types andalgorithms for this domain. This
work proposes harmonized data-types and harmonized interfaces for software components. The
components encapsulate the atomic parts of the common algorithms. Existing implementations
in public available software libraries are refactored to implement the proposed components. The
software is integrated into one common framework, called BRICS 3D library. Benchmarks of the
components are performed with existing data sets. These benchmarks are the base for impartial
deduction ofbest practicefor a given task.

iii

ACKNOWLEDGMENTS

I would like to thank Erwin Prassler for supervising my master thesis and for giving me the great

opportunity to participate in the BRICS project. I would like to thank Jan Fischer for giving me

uncomplicated support with my thesis. My thanks to Walter Nowak for fruitful discussions and

critical feedback.

I particular thank all the colleagues from the GPS for havinga warm and inspiring working

environment. Especially I would like to thank Alexey Zakharov, Thilo Zimmermann, Corinna

Noltenius and Knut Drachsler.

My thanks to Davide Brugali, Herman Bruyninckx and Gerhard Kraetzschmar for giving me

valuable feedback. I would like to thank all the other members of BRICS, for gathering valuable

and new experiences.

I would like to thank Thorsten Linder for poof reading my this. My thanks to all my former

colleagues Christoph Brauers, Viatcheslav Tretyakov, Peter Molitor, Dirk Holz, David Dröschel,

Hartmut Surmann and Paul Plöger at IAIS for having a great time in the robot pavilion.

I appreciate my highest thanks to my parents Irmhild Blumenthal and Werner Blumenthal

for their love, emotional and financial support during my whole study period. Many thanks to my

sister Martina Blumenthal for encouraging me and for proof reading my work. Thank you very

much, Ina Overath for backing me up, especially in the final stages of my thesis.

iv

CONTENTS

ABSTRACT . iii

ACKNOWLEDGMENTS. iv

LIST OF TABLES . viii

LIST OF FIGURES. ix

1. INTRODUCTION. 1

1.1 Motivation. 1

1.2 Context of work. 1

1.3 Problem statement. 1

1.4 Thesis Outline. 2

2. BACKGROUND . 3

2.1 Terminology. 3

2.2 Overview of 3D perception and modeling domain. 7

2.3 3D perception and modeling processing stages. 9

2.3.1 Depth perception. 10

2.3.2 Filtering. 11

2.3.3 Registration. 11

2.3.4 Segmentation. 13

2.3.5 Mesh generation. 13

2.3.6 Visualization . 14

3. STATE OF THE ART . 16

3.1 Benchmarking in robotics. 16

3.2 Algorithms for 3D perception and modeling. 21

3.3 Public available libraries for 3D perception and modeling 28

4. CONCEPT. 35

4.1 Basic Approach. 35

4.1.1 Exploration. 35

4.1.2 Harmonization. 35

4.1.3 Refactoring. 37

v

CONTENTS

4.1.4 Integration . 37

4.1.5 Evaluation . 37

4.2 Review of 3D perception an modeling elements. 38

4.3 Harmonization of common data-types. 38

4.3.1 Cartesian point representation. 39

4.3.2 Cartesian point cloud representation. 42

4.3.3 Triangle mesh representation. 45

4.4 Refactoring and harmonization of common algorithms. 48

4.4.1 The Octree component. 49

4.4.2 The Iterative Closest Point component. 50

4.4.3 Thek-Nearest Neighbor search component. 52

4.4.4 The Delaunay Triangulation component. 53

5. IMPLEMENTATION . 54

5.1 Choice of programming language and tools. 54

5.2 Implementation Overview. 55

5.3 Common data-types. 56

5.3.1 Cartesian point representation. 56

5.3.2 Cartesian point cloud representation. 57

5.3.3 Triangle mesh representation. 58

5.4 Common algorithms . 59

5.4.1 The Octree component. 59

5.4.2 The Iterative Closest Point component. 60

5.4.3 Thek-Nearest Neighbor search component. 62

5.4.4 The Delaunay triangulation component. 62

5.5 Framework integration. 63

6. EXPERIMENTAL EVALUATION . 64

6.1 Evaluation environment. 64

6.2 Performance metrics. 64

6.3 Performance of Cartesian point data-type. 65

6.4 Performance of Point Correspondence. 67

6.5 Performance of Rigid Transformation Estimation. 68

6.6 Performance of Iterative Closest Point. 68

7. CONCLUSION . 72

7.1 Summary . 72

7.2 Future work. 72

vi

BIBLIOGRAPHY . 74

APPENDICES

A. UML Class diagrams . 83

A.1 Data-type representations in existing libraries. 83

A.1.1 Cartesian point representations in existing libraries 83

A.1.2 Cartesian point cloud representations in existing libraries 87

A.1.3 Tringle mesh representations in existing libraries. 92

A.2 Implementation details. 98

A.2.1 Implementation of harmonized data-types. 98

A.2.2 Implementation of components. 101

vii

LIST OF TABLES

3.1 Summary of public available libraries.. 34

4.1 Comparison table for Cartesian point representation.. 42

4.2 Comparison table for Cartesian point cloud representation. 44

4.3 Comparison table for triangle mesh representation.. 48

6.1 Benchmark of influence of coordinate type in Cartesian point representation.. . . . 66

viii

LIST OF FIGURES

2.1 Taxonomy of 3D model representations.. 5

2.2 Terminology of a triangle.. 6

2.3 Context of 3D perception and modeling domain. 8

2.4 Overview of 3D perception and modeling processing stages. 10

2.5 Relation between Delaunay triangulation and Voronoi graph in a plane.. 14

4.1 UML component diagram of the Octree algorithm.. 49

4.2 UML component diagram of the Iterative Closest Point algorithm. 51

4.3 UML component diagram of the Point Correspondence component. 51

4.4 UML component diagram of the Rigid Transformation Estimation component.. . . 52

4.5 UML component diagram for thek-Nearest Neighbor search component. 53

4.6 UML component diagram for the Delaunay Triangulation component. 53

5.1 Overview of implemented data-types and algorithms. 56

5.2 Examples of point clouds.. 58

5.3 Example of a triangle mesh.. 59

5.4 Example of Octree reduction.. 60

5.5 Example of ICP registration.. 62

6.1 Benchmark of influence of coordinate type in Cartesian point representation.. . . . 66

6.2 Memory profiles for coordinate types in Cartesian point representation. 67

6.3 Benchmark results for the Point Correspondence algorithms 68

6.4 Benchmark results for the Rigid Transformation Estimation algorithms 69

6.5 Benchmark results for the Iterative Closest Point algorithm 70

A.1 UML class diagram of Cartesian point representation in 6DSLAM library. 83

A.2 UML class diagram of Cartesian point representation in MRPT library. 84

A.3 UML class diagram of Cartesian point representation in IVT library. 84

ix

LIST OF FIGURES

A.4 UML class diagram of Cartesian point representation in FAIR library. 85

A.5 UML class diagram of Cartesian point representation in ROS. 85

A.6 UML class diagram of Cartesian point representation in ITK library. 85

A.7 UML class diagram of Cartesian point representation in Meshlab.. 86

A.8 UML class diagram of Cartesian point representation in KDL library. 86

A.9 UML class diagram of Cartesian point cloud representation in 6DSLAM library. . . 87

A.10 UML class diagram of Cartesian point cloud representation in MRPT library. 88

A.11 UML class diagram of Cartesian point cloud representation in IVT library. 88

A.12 UML class diagram of Cartesian point cloud representation in FAIR library. 89

A.13 UML class diagram of Cartesian point cloud representation in ROS.. 90

A.14 UML class diagram of Cartesian point cloud representation in ITK library. 91

A.15 UML class diagram of Cartesian point cloud representation in Meshlab.. 91

A.16 UML class diagram of triangle mesh representation in VTK. 92

A.17 UML class diagram of triangle representation in Meshlab. 93

A.18 UML class diagram of triangle mesh representation in Meshlab. 93

A.19 UML class diagram of triangle mesh representation in Gmsh library. 94

A.20 UML class diagram of triangle mesh representation in Qhull library. 95

A.21 UML class diagram of triangle mesh representation in CoPP and BRICSMM library. 96

A.22 UML class diagram of triangle representation in openrave library. 96

A.23 UML class diagram of triangle mesh representation in openrave library.. 96

A.24 UML class diagram of triangle mesh representation in OSG library. 97

A.25 UML class diagram of triangle mesh representation in ROS. 97

A.26 UML class diagram of harmonized Cartesion point representation. 98

A.27 UML class diagram of homogeneous transformation matrix. 99

A.28 UML class diagram of harmonized Cartesion point representation. 99

A.29 UML class diagram of harmonized Cartesion point representation. 100

A.30 UML class diagram of Octree component implementation.. 101

x

LIST OF FIGURES

A.31 UML class diagram for Iterative Closest Point component implementation.. 102

A.32 UML class diagram for Point Correspondence component implementation.. 103

A.33 UML class diagram for Rigid Transformation Estimationcomponent implementation.103

A.34 UML class diagram fork-Nearest Neighbor search component implementation.. . 104

A.35 UML class diagram for Delaunay Triangulation component implementation. 104

xi

Chapter 1

INTRODUCTION

1.1 Motivation

Autonomous robot systems are complex systems with different kinds of hardware and soft-

ware components. A developer, which has to design a robot fora specific task, faces many prob-

lems: What is the right choice of sensors, actuators or the robot platform? Which algorithms like

navigation, task planning, manipulation or machine learning strategies are the most suitable for the

application? Which of them need to be integrated and which need to be reimplemented? Nowa-

days, robots are typically build from scratch because a wellestablishedrobot engineeringor robot

development processis missing completely. Arobot development processwould significantly help

the developer and speed up the development time. One important aspect is that the process should

help to get access tobest practicechoices for the application, and thus suitable algorithms should

be measurable and comparable.

1.2 Context of work

This work is done in the context of the European Best Practice In Robotics(BRICS) project.

The project’s focus lies on identifying arobot development process. A Model Driven Engineering

(MDE) approach for arobot development processis the desired goal. This comprises several

subcomponents: hardware, middleware, drivers, algorithms, models and tools that support the

MDE approach. BRICS tries to identifybest practicesolutions in each of these categories, so a

robot developer might later choose the components in his design software, which are most suitable

for a specific application. This master thesis is about the algorithmic component, to be more

precise:best practicealgorithms in 3D perception and modeling4.

1.3 Problem statement

This work addresses the crucial component of 3D perception and modeling for robotic

applications. A robot needs a representation of its environment to reason about what to do next

to accomplish a given task. This representation is amodelof the environment. To get access to

a model the robot needs perception that means the ability to sense the environment. The more

advanced the task of the robot, the more sophisticated its perception must be. For example a robot

that should grasp three dimensional (3D) objects like a cup on a table needs a three dimensional

4The term ”modeling” is referred here as a 3D representation of an object, rather than a part ofModel Driven
Engineering (MDE)

1

Chapter 1. INTRODUCTION

world model. Different approaches exist, but they are not yet easily comparable or exchangeable.

Theproblemis to identifybest practicealgorithms for 3D perception and modeling. That means

to make algorithms interchangeable, comparable and thus measurable. The goal of this work is to

provide a framework of refactoredbest practicealgorithms for 3D perception and modeling for

robotic applications.

1.4 Thesis Outline

This master thesis is structured as follows:

• Chapter2 clarifies definitions of important terms occurring in this work, followed by a gen-

eral overview in which the context of the 3D perception and modeling domain is embedded.

The Chapter closes with algorithmic details of the 3D perception and modeling domain.

• Chapter3 depicts current efforts in benchmarking of robots and why itis so difficult to com-

pare different robotic systems. Related work of algorithmsfor 3D perception and modeling

is presented, followed by a list of public available libraries that at least partially imple-

ment these algorithms. The libraries are a starting point todevelop comparable and thus

benchmarkable algorithms that can lead to statements aboutbest practicealgorithms for 3D

perception and modeling.

• Chapter4 explains the process of identifyingbest practicealgorithms. First the general

approach is depicted, then it is applied to the domain of 3D perception and modeling. Re-

quirements for harmonized data-types, software components and harmonized interfaces for

the components are presented.

• Chapter5 shows the implementation of the requirements for harmonized data-types and the

realization of the components for common algorithms. The software is integrated into the

BRICS3D library.

• Chapter6 presents benchmarks of the atomic components to judge, which algorithms are

best practicefor 3D perception and modeling. The used test-bed and the measured perfor-

mance metrics are discussed.

• Chapter7 summarized the results of this work and enumerates open issues.

2

Chapter 2

BACKGROUND

The Background Chapter will start with definitions of important terms occurring in this work,

followed by a general overview in which the context of the 3D perception and modeling domain

is embedded. The last Section in this Chapter dives a step deeper into the algorithmic details of

this domain.

2.1 Terminology

The terminology Section starts with clarification of the termsbest practicealgorithms and

the closely related procedure ofbenchmarking. Then definitions in the field of3D perceptionand

modelingare provided. The terminology forsoftware engineeringaspects are presented, because

these techniques will be applied to the algorithms in the 3D perception and modeling domain, to

be able to deducebest practice.

Best practice algorithms

Best practiceor sometimes also calledgood practice, best in classor leading practiceis a

term that has its origin in the business domain. A suitable definition for best practiceis:

”Methods and techniques that have consistently shown results superior than those

achieved with other means, and which are used asbenchmarks to strive for. There

is, however,no practice that is best for everyone orin every situation, and no best

practice remains best for very long as people keep on finding better ways of doing

things.” [1]

Applied to 3D perception and modeling algorithms for robotic applications,best practice

can be regarded as an algorithm that performs betters than other algorithms, for a specific task.

Depending on the task for a robotic system, the superior or best algorithm might not be the same.

For example a scenario requires a fast generation of a 3D model, neglecting high accuracy of that

model, while another scenario depends on a very detailed model, but has more relaxed timing

constraints.Best practicealgorithms might even get outdated, when new algorithms outperform

older approaches. The quoted definition identifies the principle of abenchmarkto compare differ-

ent algorithms.

3

Chapter 2. BACKGROUND

The termbenchmark can be defined as ”a standard measurement that forms the basisfor

comparison”[2] or ”a measure ([of] a rival’s product) according to specified standards in order to

compare it with and improve one’s own product” [3]. Applied to the world of robotics this means

with the help of a benchmark it is possible to compare the performance of robots or algorithms.

Although the perspective of a robot as a ”product” might be uncommon, the second definition gives

a hint to an intrinsic motivation behind benchmarking: improve a system. Another motivation

is to assess an objective measure that allows to choose thebest or best practicesystem for a

certain application. The measurable quantities for robotic benchmarks are currently a subject of

discussion of its own, see also Section3.1.

3D Perception

Perceptionis the process of acquiring knowledge about the environment. Perception can be

subdivided into two parts:sensingandinformation extraction[4]. Sensing is the task of producing

measurements with different sensors like cameras or laser range finders. The outcome of the sens-

ing process is typical raw-data, which can be further processed to extract meaningful information.

Cognitive reasoning on an abstract level is beyond the scopeof perception.

3D perception means that knowledge in the three dimensional domain is gathered. The

goal is to generate a 3D representation of the robots environment. It is crucial to reason in a 3D

environment, as the robot lives in the real world and interacts with 3D objects and 3D obstacles [5].

To acquire 3D measurements, technology is applied that can achievedepth perception. Different

sensors and approaches for depth perception exist. Some of them are listed in Section2.3.1.

3D Modeling

3D modeling is the process of creating a 3D model of the environment. A3D model is

a three dimensional digital representation of a three dimensional entity. As autonomous robots

have to reason about their environment, they also need an representation of this environment. The

research field of 3D modeling has its origin in 3D computer graphics and 3D video games. Dif-

ferent ways to represent a model have been developed. They can be categorized into three main

categories:dense depth, surface basedor volumetricrepresentation [6].

Dense depthrepresentations can bedepth imagesthat are typically delivered bydepth per-

ceptiondevices, like Time-of-Flight or stereo cameras (cf. Section 2.3.1). A depth image stores

the distance information to the front of the captured scene in the pixels of the image. For example

displayed as gray-scale image, bright regions appear nearer to the sensor (depending on the coding

of the depth information). As a depth image only captures a portion of an 3D environment that

depends on the view point, this is sometimes referred as 2.5Drepresentation, being more than 2D

but not fully 3D (cf. Chapter 22 of [7]). Depth images can be aggregated tolayered depth images

4

Chapter 2. BACKGROUND

Figure 2.1: Taxonomy of 3D model representations.

(LDI) that contain multiple snapshots of the same object, taken from different positions, to form a

full 3D model [6].

Surface basedmodels are the most common 3D representations. An object is represented

by its boundary: the surface. The content of the object is neglected. Surface based models fall into

three subcategories:point samples, polygon meshesand implicit representations.Point samples

approximate a surface by picking some points of the surface.Grouped together, the samples form

a point cloud. Point clouds are possibly the most common representation in robotics, as many

sensors like laser scanners create surface samples, for example when a laser beam hits the surface.

Polygon meshesmodel 3D surfaces with a set of 2D polygons. Each area, also called facet

that is enclosed by theedgesof the polygon, is a part of the surface. The points of a polygon are

calledvertices(singularvertex). A popular polygon used for meshes is thetriangle. A triangle is a

polygon with the least number of points to create a 2D polygon. Figure2.2depicts the terminology

of the elements of a triangles. The three vertices are connected via three edges that enclose a facet.

Polygon meshes are a very common in manufacturing, architectural and entertainment industries.

They are the basic primitives for graphic cards.

The implicit surface representation tries to describe the surface with mathematical func-

tions: curves for the 2D case and shapes for the 3D case.Non-uniform rational basis spline

(NURBS)uses surface patches which are composed ofsplines. A spline is a piecewise constructed

smooth function. NURBS are commonly used inComputer Aided Design (CAD).

Volumetric representations of models usevoxels. A voxel (volume pixel) is the small-

est representable amount of space. A simple volumetric representation is a 3D binary grid that

indicates if a cell is occupied or not. This approach is extremely memory inefficient. A better

representation is theOctree. The Octree is a recursive subdivision into eight cubes. Empty cubes

are neglected and the model results in a tree like structure of cubes, representing the volume of

5

Chapter 2. BACKGROUND

Figure 2.2: Terminology of a triangle. The three vertices are connected via three edges that
enclose a facet.

the 3D model. Furthermore, an often used representation is aset of tetrahedrons. A volume is

composed of many tetrahedrons.

Mathematically, tetrahedrons and triangles are related, as both aresimplices. A k-simplex

is theconvex hullof exactlyk + 1 points. The convex hull can be understood as the boundary of

a point set. A vertex is a0-simplex, an edge is a1-simplex, a triangle is a2-simplex and the tetra-

hedron is a3-simplex. When many simplices describe on object, than it isalso calledsimplical

complex. The triangle set is a simplical complex for 2D surfaces and the set of tetrahedrons is the

simplical complex for 3D volume representations [8].

The robotic domain is typically only interested in surface meshes. For grasping or collision

checking the content is irrelevant as only the boundary of the object, defined by its surface, is

needed. For the remaining parts of this work meshing algorithms will refer to surface meshes,

rather than volumetric approaches.

Software Engineering

Software Engineeringis a structured and systematic way to develop software. One impor-

tant goal is to create maintainable and reusable high quality software. Some techniques in software

engineering are the appliance ofsoftware patterns, software refactoring, design ofsoftware com-

ponentsor model-driven engineering.

Software patterns are standardized, abstracted solutions to often recurringproblems [9].

To some extent the patterns arebest practicesolutions for software development problems. The

description of a pattern captures the core of the solution and includes the main consequences.

Although, providing abstract solutions, some patterns areonly applicable to object-oriented pro-

gramming languages, as for example class inheritance mightbe required.

Software Refactoring means changing the internals of a code without modifying theex-

ternal behavior [10]. This term fits well to this work, as the algorithms should bemade easily

comparable without changing the behavior of the algorithm.

6

Chapter 2. BACKGROUND

Software componentsare entities that structure software into modules. Each module

should contain elements that somehow belong together. The motivation for software components

is to have elements the can be reused in other applications. The components communicate via

interfaces. The internal structure is unspecified, this is completely left to the programmer that

means the implementation could be object-oriented or consist of further subcomponents. Ideally

a component should be reusable and replaceable by other implementations (even with 3rd party

components) [11].

In Model-driven engineering (MDE), the software developer usesdomain-specificmod-

els. A model could for example describe architectural or behavioral elements and consist of soft-

ware components. These models are (partially) transformedinto source code by special generator

tools [12].

Unified Modeling Language (UML) is a standardized way to specify models that describe

certain parts of a software. UML can be regarded as thedomain-specificmodel for the domain of

software development. UML has a well known way to visually display certain aspects of software:

UML diagrams. There are different UML diagram types. This work usesclassdiagrams which

can represent classes of an object-oriented language, andcomponentdiagrams that depict software

components. Software patterns are typically accompanied by UML diagrams.

Unfortunately software engineering principles are not yetwidely used for robotic applica-

tions [13]. One reason is the difficulty in creating reusable software, because of heterogeneous

software and hardware requirements. Another reason is thatthe development focus is often on

efficient implementation of algorithms, as (near) real-time capability are a major design criterion

and thus neglecting the reusability of software parts. Thiswork will apply some of the techniques

mentioned above to existing algorithms for 3D perception and modeling to make them easier to

benchmark and to get easier access tobest practice.

2.2 Overview of 3D perception and modeling domain

This section will briefly look into the context of 3D perception and modeling that means

which neighboring research domains are there, and how are they related. 3D perception and

modeling, for robotic applications, has an overlap with at least four other major domains:depth

perception, Simultaneous Localization and Mapping (SLAM), object recognitionand3D modeling.

Figure2.3depicts the context of the 3D perception and modeling domain.

• Depth perception: The depth perception domain tries to measure depth information that is

important to generate a 3D model of an environment. Different kinds of sensor technology

is applied, like stereo cameras, Time-of-Flight cameras, laser scanners or structured light.

7

Chapter 2. BACKGROUND

SLAM

Figure 2.3: Context of 3D perception and modeling domain.

This domain contributes algorithms that can recover depth information, for example depth

reconstruction of two images from a stereo camera system. Other algorithms are able to

reduce the noise of the measurements or provide low level signal processing capabilities in

general that might be already embedded into the sensor devices.

• Simultaneous Localization and Mapping (SLAM): SLAMis a robotic research field. Here

the problem is that the robot needs to know where it is, therefore it needs a representation

of the world. This representation, also calledmap, should be generated autonomously by

the robot while it explores the environment. Thus the robot is able to navigate in unknown

terrains. The next step is to localize it in the map (mapping). If mapping is performed

correctly the position on the map corresponds to the position in the real world. The problem

of the simultaneous creation of a map and the localization onit has formed the termSLAM

[14, 15].

Although early solutions for SLAM operated with 2Dmap representations, recent devel-

opments have lifted this representation to 3Dmaps. Thus the SLAM domain contributes

algorithms needed for 3D perception and modeling tasks. As sensors are needed to create

themaps, the SLAM domain has a natural overlap with the field ofdepth perception.

8

Chapter 2. BACKGROUND

• Object recognition: The problem inobject recognitionis to find objects in a scene that are

known in a database. For example the task is to find a bottle in an image that is previously

stored in a database. Some algorithms use dedicated features in an image like SIFT [16]

or SURF [17], to uniquely represent objects. These kind of features arealso used in some

visual SLAM approaches [18]. Other algorithms exploit spatial properties, for example in

point clouds they detect doors, door handles, tables or dashboards [19]. Object recognition

approaches need sensors and therefore they are also relatedto thedepth perceptiondomain,

although not all approaches need three dimensional data. Even somedepth perceptional-

gorithms rely on dedicated features, like SIFT or SURF, to estimate the depth from motion

[18].

• 3D modeling: 3D modeling is the field of representing, generating or visualization of 3D

models as presented in Section2.1. The main interest groups are typically 3D computer

games, computational geometry, 3D computer animations, digital archives (cultural her-

itage) like the digitalMichelangelo Project[20], virtual reality, or even 3D-TV which is a

recent emerging branch. Algorithms in this domain are able to transform, refine and visual-

ize 3D models.

The 3D modeling domain is related to all other previously mentioned fields. Depth per-

ceptionis needed to capture for example cultural heritage, as mentioned before, or stereo

cameras are used for 3D-TV applications. 3D SLAM approachesinherently use 3D mod-

els in the form of point clouds. Some object recognition techniques store a 3D model in a

database which, in the recognition phase, might be projected into an image from a camera.

3D perception and modeling can bee seen as in between all the previous domains. It uses at

least partially algorithms from these domains. Further details about the predominant algorithmic

subareas are explained in the next Section2.3.

2.3 3D perception and modeling processing stages

This section will categorize the important algorithmic subareas for 3D perception and mod-

eling. This work is biased towards 3D perception and modeling for mobile manipulation ap-

plications. This has historical reasons, as thebest practice algorithms for mobile manipulation

planninghave been already refactored and integrated into theBRICSMM library, by [21]. This

work onbest practicealgorithms for 3D perception and modeling tries to close thegap between

the real world and 3D environment models that are needed by the mobile manipulation planning

algorithms. As those planners need a triangle set representation of the environment, the processing

stages for 3D perception and modeling aim to create the required a triangle mesh of the environ-

ment, with sensor data as input. This process has several stages, as indicated in Figure2.4: depth

perception, filtering, registration, segmentation, mesh generationandvisualization.

9

Chapter 2. BACKGROUND

Please note that Figure2.4 suggests areconstruction pipelineas it is commonly seen on

recent approaches like in [22], [23] or [19]. However, a 3D perception and modeling task does

not necessarily have to be organized as apipeline. The reconstruction process could be a network

that has multipledepth perceptionmodules, multiplemesh generationstages or multiple models

at different resolutions. For example, a global planner needs a rather rough representation to cope

with delicate structures like tables or chairs while an obstacle collision avoidance algorithm needs

a very detailed representation. The different 3D models might be acquired or processed with

different frequencies. The processing network could even havebidirectional connections, where

for example thedepth perceptionis influenced by the model, as seen in [24]. Or the amount of

noise detected by a filter has influence on the depth perception device and adjusts parameters like

for example the capturing frequency or brightness correction for cameras.

The insight of possible setups within a processingnetworkin terms of reusability is that this

work does not impose any apipelinesemantics. The reconstructionpipelinescenario is just re-

garded a the simplest possible configuration. This is also why in figure2.4the arrows between the

stages are only indicated with dashed lines. The remainder of this section describes the different

processing stages in further detail.

Figure 2.4: Overview of 3D perception and modeling processing stages.

2.3.1 Depth perception

For depth perceptionvarious kinds of sensors exist. Laser scanners emit laser beams that

are reflected when the beams hit the surface. The traveling time of the light is used to deduce the

distance. Time-of-Flight cameras follow the same principle, but some devices measure the phase

shift of a modulated frequency rather than the traveled time. Stereo camera systems consists of

10

Chapter 2. BACKGROUND

two cameras that are mounted on a fixed baseline. As the baseline is known, distances to corre-

sponding points can be calculated via triangulation. Sensor data is often encoded intodepthor

range images. Although thedepth perceptionis a crucial step for 3D perception, it is assumed in

this work that depth images are already given. Algorithms inthis domain are typically hardware

dependent, and the benefit of refactoring algorithms in thissector might be low. This work will

provide functionality to turn a depth image into a point cloud representation.

For further information about depth sensing technology, the reader may refer to the follow-

ing literature: Chapter 22.1 in [7], Chapter 4 in [4] or Chapter 2 in [25].

2.3.2 Filtering

A filter is an algorithm that is able to process a data stream, in this case point cloud data.

Three major filtering techniques are often applied to point clouds:noise reduction, size reduction

andnormal estimation.

Noise reductionfilters try to remedy shortcomings of the sensors measurements. Size reduc-

tion filters sub-sample the input data to get an approximated but smaller amount of data. The less

input data an algorithms has, the faster the processing is.Normal estimationfilters are needed to

compute a normal vector for each point in a point cloud. The normal represents the plane normal

vector of an underlying patch of the surface. Many algorithms requires point clouds with normals

to further process the data. The filtering stage can be regarded as optional, but it is a valuable

contribution to create more robust or faster results.

2.3.3 Registration

Registration, also sometimes referred asmatching, is the process of merging captures from

different viewpoints into one global, consistent coordinate frame. This is a robotic problem, be-

cause mobile robots move in their environment and thus are able to perceive the environment from

different perspectives. Some tasks require to integrate all perceived scene captures into one con-

sistent model to reason about it (for example to plan a path).The most prominent algorithm to

solve the registration problem for point clouds is theIterative Closest Point (ICP)method.

As the ICP will be addressed in later Chapters a brief introduction (cf. [25]) shall be given

here: The initial version of the ICP was introduced by [26] and [27]. Input data are typically two

point cloudsmodelanddata. Other input like polylines, implicit/parametric curves,triangle sets

or implicit/parametric surfaces are also possible, but internally the ICP works on point sets. The

ICP iterates over the following three steps: establishpoint-to-point correspondences, estimate the

rigid transformationandapply transformationto datapoint set (cf. Algorithm2.1). The behavior

is that the algorithm aligns both point sets better to each other with every iteration.

11

Chapter 2. BACKGROUND

The creation ofpoint-to-point correspondencesmeans that two points from the two differ-

ent input point clouds are regarded as corresponding if theyhave the closest Euclidean distance

to each other. To compute the closest distance a Nearest Neighborhood search is invoked. This is

the computational most expensive part of the ICP, and different approaches and optimization are

available.

The second step is toestimate the rigid transformationthat is needed to minimize a cost

function which determines the overall error between the correspondences. This error function is

defined as follows:

Two independent sets of points, the model point setM̂ with size|M̂ | = Nm, and data point

setD̂ with size|D̂| = Nd, are the input. The goal is to find a transformation(R, t) that minimizes

the following error function [26, 27]:

E(R, t) =

Nm∑

i=1

Nd∑

j=1

wi,j ‖m̂i − (Rd̂j + t)‖
2

(2.1)

The parameterwi,j is 1 if the i-th point of the model set̂M has a correspondence with

the j-th point from the data point set̂D, that means both point sets describe the same 3D point.

Otherwise the parameterwi,j is 0. To prevent having a huge matrix forwi,j the equation can be

further simplified to:

E(R, t) =
1

N

N∑

N=1

‖mi − (Rdi + t)‖2 (2.2)

WhereasN =
Nm∑
i=1

Nd∑
j=1

sign(wi,j). The correspondence can be now expressed by a tuple

(mi,di) for thei-th correspondence.

In the last step of an iterationR andt are applied to thedatapoint cloud. The previous steps

are repeated either until thedataconverges to themodel, for example if the error of Equation2.2

falls below a certain threshold, or a defined amount of maximum iterations is reached. The ICP is

summarized in Algorithm2.1.

The ICP has two major disadvantages. First, the initial transformation between two point

clouds relies on a good guess for correct convergence. Most robotic systems can resolve this

problem by incorporation of odometric values from the wheels. Second, the ICP only converges

to a local minimum, which does not need to be the correct final alignment. Especially registration

of data with spacial ambiguities are problematic.

12

Chapter 2. BACKGROUND

Algorithm 2.1 The ICP algorithm
1: for i = 0 to maximumIteration do

2: Find correspondences(mi,di) between point cloud̂M andD̂.

3: Estimate the rigid transformationT, which is composed of rotationR and translationt

that minimizes the error functionE(R, t) in Equation2.2 between the correspondences

(mi,di).

4: Apply that transformationT to point cloudD̂

5: if errorE(R, t) < some thresholdǫ then

6: Terminate algorithm.

7: end if

8: end for

2.3.4 Segmentation

Segmentation means a spatial partition of point clouds intosubsets that belong to different

objects. 3D models of special shapes, like boxes, cylindersor balls are often fitted into these

regions to model the perceived objects.

With respect to a mobile manipulation application that needs a triangle set representation of

an environment this stage can be regarded as optional. However, the segmentation of data might

be helpful to recognize objects that can be grasped, for example.

2.3.5 Mesh generation

The goal of themesh generationstep is to transform a 3D point cloud into a triangle mesh.

Similar terms aremeshing, shape recovery, surface recovery, surface reconstruction, model re-

trieval, inverse CADor geometric modeling(in computer vision). Most of these terms are used

in a broader context that already includes some filtering or registration steps. The notionmesh

generationis used here in a more limited way restricted to the part of model transformation from

point cloud to triangle mesh.

Many mesh generation algorithms useDelaunay triangulation. Dalaunay triangulationis

a mesh that fulfills theDelaunay property. The Delaunayempty circle propertyfor 2D triangula-

tions is defined as the circumscribing circle of any trianglethat does not contain any other point of

the point set. For the three dimensional case the circumscribing sphere of a tetrahedron does not

have any internal other points. Triangulations are possible in any dimension and always result in a

partition into simplices of theconvex hullof the vertices. As a consequence, no simplex intersects

any other simplex [8].

The result of aDelaunaytriangulation is unique, except if more points than the vertices for

a simplex areco-circular. In this case more than one validDelaunaytriangulations exist. For

example in the 2D case, four points might be on a circumscribing circle of a triangle, or in the 3D

13

Chapter 2. BACKGROUND

(a) (b) (c)

Figure 2.5: Relation between Delaunay triangulation and Voronoi graph in a plane. (a)
shows the Delaunay triangulation, (b) shows the corresponding Voronoi graph and (c) shows
the superposition of both.

case, five points might be on the circumscribing sphere.

To compute aDelaunaytriangulation for arbitrary dimensions points are typically inserted

incrementally and each time theDelaunay propertyis updated. To perform this update, all cir-

cles/spheres that contain the new point need to be found. These simplices are then deleted, as

they violate theDelaunayproperty. New simplices are added that include the new pointas vertex.

The number of deletions depends on which point of the input isinserted, thus the complexity de-

pends on the order of the input data. To balance the input datathe input points are often selected

randomly, thus the namerandomized incrementalalgorithm. The worst case complexity for di-

mensiond is O(nd/2) while the average case isO(n log n). For the special case dimensiond = 2

other algorithms exist, likeflipping, plane sweepor divide and conquerbut without significant

reduction in complexity [28].

Delaunay triangulations have an interesting dual relationship toVoronoigraphs. TheVoronoi

graph createsVoronoicells with polygons, such that each point on the cell edges does not have a

smaller distance to any other point of the input point set. The Voronoidiagrams result from con-

necting all centers of the circumscribing circles/spheresof the Delaunay triangulation. Figure2.55

depicts the relationship betweenDelaunaytriangulations and the correspondingVoronoidiagram

for the 2D case [29].

2.3.6 Visualization

Visualization, or rendering, is the process of displaying the 3D models. This involves a

transformation from the models into a 2D image, which can be displayed on a monitor. This

task is often performed by specialized hardware:graphic adapters. The graphic adapters offer a

5Images taken fromhttp://de.wikipedia.org/wiki/Delaunay-Triangulation

14

http://de.wikipedia.org/wiki/Delaunay-Triangulation

Chapter 2. BACKGROUND

software interface to render the models that consist of primitive elements like points, lines or poly-

gons. One standardized interface isOpenGL, which allows operating system independent access

th the graphic adapters [30].

Robotic applications do not necessarily need to visualize the generated models, but visu-

alization can serve as a development or debug tool to visually inspect intermediate results or the

output of certain algorithms. Actually, algorithms for rendering do not need to be refactored be-

cause standardized interfaces already exist.

The next Chapter will review related work of algorithms of the presented processing stages.

15

Chapter 3

STATE OF THE ART

This Chapter will start with current efforts in benchmarking of robots and why it is so difficult

to compare different robotic systems. As this work focuses on the 3D perception and modeling,

related work in this field will be also presented, followed bya list of public available libraries

that at least partially implement the presented algorithms. These libraries are a starting point to

develop comparable and thus benchmarkable algorithms thatcan lead to statements aboutbest

practicealgorithms for 3D perception and modeling.

3.1 Benchmarking in robotics

Performance metrics, benchmark databases and widely accepted comparison methodolo-

gies are very important instruments, for industry as well asfor science. Robotics research does

not have a well elaborated methodology for benchmarks and experiments yet. This makes it hard

to compare different approaches, especially in different scenarios or environments [31].

Related work is paying more and more attention to benchmarking and evaluation [32].

Benchmarking in robotics can be roughly categorized into atop-downand abottom-upa per-

spective [33]. Top-downmeans the robot is investigated as a whole system or a ”black box”. This

view can be further subdivided into robotcompetitionsandsystem benchmarks. Competitions

as benchmarks like RoboCup have the advantage that it is easyto evaluate if a robot can achieve

a given task. As a disadvantage, intensive evaluation with real robots require detailed protocols

of experimentations’ to allow for the experiments to be repeated. System benchmarks measure

quantities like functional time, memory consumption or accuracy for example in pose estimation.

A more fine-grained benchmarking is achieved in abottom-upfashion. Here each single

sub-entity is individually evaluated. Sub-entities can bealgorithms, devices, atomic components

or complex/composite components. A special problem and open issue is the fact that no common

software interfaces are yet available for these entities [31]. Thus harmonized interfaces would be a

valuable contribution to enable component-based benchmarking. Most benchmarking efforts have

been concentrating on evaluation of a robotic system as a whole, rather than on a component level.

Competitions and challenges

Robot competitions and challengeshave become a very poplar way to compare robotic

systems. The performance metrics for each competition can be seen as standardized as every par-

16

Chapter 3. STATE OF THE ART

ticipating team has to obey the same set of rules. The RoboCup6 is a well-known competition with

its various subcategories like RoboCup Rescue or RoboCub@Home. The US Defense Advanced

Research Projects Agency hosted the DARPA Grand challenge in 2004 and 2005 and the URBAN

challenge7 in 2007. These competitions benchmarked the capabilities of unmanned autonomous

cars. Similar to this, the ELROB8 activities have been initiated by the German FGAN institution.

However, they have a less competitive focus and serve ratheras a demonstration of state-of-the-art

robotic technology.

Simulation platforms

Simulation platformsplay an important role in benchmarking, as they allow to perform ex-

periments of robotic systems or algorithm with the absence of a real robot. Experiments can be

repeated easier without a hardware platform, and can be evenautomatized. The ability to be able

to evaluate alternatives (e.g. different algorithms) during the design phase is another advantage of

simulation tools [31]. Although simulation is a helpful tool for benchmarking itcannot address

all real world problems and it cannot replace system benchmarks with hardware platforms. One

of the most popular robot simulators (especially in education) is the Player/Stage9 framework. It

has its focus on 2D navigation, but in combination with Gazebo 10 3D simulation is possible. The

USARSim11 is a 3D simulation developed for the RoboCup rescue competition. Even Microsoft

has developed a commercial tool for robotic simulation: Microsoft Robotic Studio12. Recent

research efforts have started to integrate robot specific functionality into the Blender simulation

toolkit 13. More specific robotic subareas like simulations for a visual servoing tasks have been

addressed with the Java-based Visual Servo Simulator (JaViSS)14

Public shared data sets

The robotic community has started to providepublic shared data sets. The Radish (Robotic

Data Set Repository)15 and the Rawseeds project16 provide data sets (developed by the Politec-

nico of Milano) for SLAM applications. Recent efforts have also addressed data sets for visual

SLAM17. Other robotic subareas established data sets for machine learning like the UCI Machine

6http://www.robocup.org/
7http://www.darpa.mil/grandchallenge/index.asp
8http://www.elrob2006.org/
9http://playerstage.sourceforge.net/

10http://playerstage.sourceforge.net/gazebo/gazebo.ht ml
11http://sourceforge.net/projects/usarsim/
12http://msdn.microsoft.com/en-us/robotics/default.as px
13http://wiki.blender.org/index.php/Robotics:Index
14http://www.robot.uji.es/research/projects/javiss
15http://radish.sourceforge.net
16http://rawseeds.elet.polimi.it/home
17http://babel.isa.uma.es/mrpt/index.php/Paper:Malaga _Dataset_2009

17

http://www.robocup.org/
http://www.darpa.mil/grandchallenge/index.asp
 http://www.elrob2006.org/
http://playerstage.sourceforge.net/
http://playerstage.sourceforge.net/gazebo/gazebo.html
http://sourceforge.net/projects/usarsim/
http://msdn.microsoft.com/en-us/robotics/default.aspx
http://wiki.blender.org/index.php/Robotics:Index
http://www.robot.uji.es/research/projects/javiss
http://radish.sourceforge.net
http://rawseeds.elet.polimi.it/home
http://babel.isa.uma.es/mrpt/index.php/Paper:Malaga_Dataset_2009

Chapter 3. STATE OF THE ART

Learning repository18 or the PASCAL Collection19 for visual object recognition. In the field

of motion planning the Parasol Lab at A&M University of Texas(famous for the alpha puzzle)
20 or the MOVIE Project (motion planning in virtual environments) 21 made public benchmarks

available. Many publications in the field of mesh generationutilize datasets from the Stanford 3D

Scanning Repository22 This repository also includes the famous ”Stanford Bunny”.

Specialized data sets for surface reconstruction are available23, as well as data sets24 for

3D segmentation with human labeled reference data.

Performance metrics

Definition of performance metricsis a crucial task to be able to perform benchmarking,

as it forms the basis of comparison. Metrics are very difficult to define (as they have a multi

dimensional nature), but can be categorized intocost, utility and reliability. Costmeasures the

efficiency or intrinsic quantity, as entitled in [34], of a system of or an algorithm. Common

quantities are computational time, memory consumption, profiling in the sense of how much time

has been spend in which functions, amount of communication or energy consumption.Utility

measures the quality of the outcome of a task or an algorithm.For example the accuracy of a

pose estimation algorithm can be compared against manual measurements. Thereliability gives

information about the failure-success rate of a given task.How often a robot can successfully

plan a path to a given goal could be such a scenario. Some examples for performance metrics for

SLAM applications can be found in [31]. Here the measured quantities are the time required to

reach a goal pose and the accuracy between final and desired goal pose. [35] defines performance

metrics for evaluation navigation of mobile robot. The NIST(National Institute of Standards and

Technology) is developing performance metrics25 for mobile robots in realistic environments, but

these are not yet commonly accepted methodologies by the robotic comminity. The University

of Zaragoza focuses on metrics for obstacle avoidance algorithms in theirAutomatic Evaluation

Framework[33].

Conference tracks and research coordination

Dedicatedconference trackshave been established like thePerformance Metrics for Intel-

ligent Systems (PerMIS)workshop26 which was held for the first time in 2000, or workshops on

benchmarks on other well-known international events (IROS’06, IROS’07, RSS’08, IROS’08).

18http://mlearn.ics.uci.edu/MLRepository.html
19http://www.pascal-network.org/challenges/VOC/databa ses.html
20http://parasol-www.cs.tamu.edu/groups/amatogroup/be nchmarks/mp/
21http://www.cs.uu.nl/centers/give/movie/description. php
22http://graphics.stanford.edu/data/3Dscanrep/
23http://www-sop.inria.fr/prisme/manifestations/ECG02 /SurfReconsTestbed.html
24http://www-rech.telecom-lille1.eu/3dsegbenchmark/
25http://www.isd.mel.nist.gov/projects/USAR/
26http://www.isd.mel.nist.gov/research_areas/research _engineering/Performance_Metrics/past_wks

18

http://mlearn.ics.uci.edu/MLRepository.html
http://www.pascal-network.org/challenges/VOC/databases.html
http://parasol-www.cs.tamu.edu/groups/amatogroup/benchmarks/mp/
http://www.cs.uu.nl/centers/give/movie/description.php
http://graphics.stanford.edu/data/3Dscanrep/
http://www-sop.inria.fr/prisme/manifestations/ECG02/SurfReconsTestbed.html
http://www-rech.telecom-lille1.eu/3dsegbenchmark/
http://www.isd.mel.nist.gov/projects/USAR/
http://www.isd.mel.nist.gov/research_areas/research_engineering/Performance_Metrics/past_wkshp.html

Chapter 3. STATE OF THE ART

A broader view on benchmarking in robotics are provided byresearch coordinationini-

tiatives that have been established to push standardized benchmarks for robotics, like theRoSta
27 project, theAutonomy Levels For Unmanned Systems (ALFUS)project28, or theEURONNet-

work 29 with its subgroups, specialized in manipulation and grasping, motion planning, networked

robotics, and visual servoing. TheEURON GEM (Good Experimental Methodology) Special In-

terest Grouphas published a document entitled ”General Guidelines for Robotics Papers Involving

Experiments” [36] with benchmark recommendations for the following domains: SLAM, Mobile

Robots Motion Control, Obstacle Avoidance, Grasping, Visual Servoing and Autonomy/Cognitive

Robotics.

Trends

Current robotic papers with a benchmarking focus, follow certain tends. Typically, the

purpose of the experimental evaluation can been categorized into four motivations [37]:

• The first motivation has just the intention to demonstrate that something works, regardless

how many attempts have been necessary to achieve a certain task.

• The second wants to show that an algorithm or a system performs better than some other

algorithm or system (horse race paper).

• The third tries to get insight on a certain behavior or limits.

• The last motivation is a mixed version of the previous ones.

Especially papers that are dominated by the first motivationoften do not follow well elaborated

methodologies, which makes it hard to compare different approaches.

Difficulties

Some commondifficulties in comparison between different robots or algorithms arisefrom

the substantial differences in the used software or hardware [38]. This makes it hard or impossible

to reproduce the presented results. The pure publication ofresults in papers does not make an

algorithm comparable. This lack of comparability slows down research progress and prevents

easy evaluation of thebest practicealgorithms.

[34] remark that it is difficult to perform time-consuming experiments and denotes a weak

awareness of the important role of experiments in the robotic development process. In many pa-

perstuningparameter of algorithms are not presented in enough detail to reproduce an experiment.

Furthermore algorithms often exploit certain assumptionsthat are hidden and not made explicit to

27http://www.robot-standards.eu/
28http://www.isd.mel.nist.gov/projects/autonomy_level s/
29http://www.euron.org/activities/benchmarks/index.ht ml

19

http://www.robot-standards.eu/
http://www.isd.mel.nist.gov/projects/autonomy_levels/
http://www.euron.org/activities/benchmarks/index.html

Chapter 3. STATE OF THE ART

the reader. An issue often neglected is the problem of groundtruth which is only partially solved

(for example in simulation) [38].

One major difficulty is to ensurerepeatability of an experiment. If this is given, the exper-

iment can be verified independently by other research groups. Beside a detailed documentation

including all parameters and assumptions, all occurred anomalies should be addressed. This does

not only foster the honesty of presented results, it also potentially reveals new issues with the

proposed approach/algorithm/system which are worth to further study. A solid documentation is

supposed to contain the number of trials needed to correctlyperform a certain task or to reach a

certain goal. Otherwise it remains unclear if the result wasachieved by chance.

Benchmarking a complex system like robot and ensuring repeatability is a difficult task, but

an interesting parallel can be drawn to the scientific field ofbiology. Here the subject of study (e.g.

human body) is also a highly complex system, thus clinical protocols and strict guidelines have

been developed to produce reliable and comparable results [32]. Another way to deal with the

complexity of robots is to benchmark on different levels. These levels can be either functional for

example cognition, perception or control. Or these levels can be on different stages of complexity

from a single algorithms to a complete system that means benchmarking either in abottom-upor a

top-downfashion. To relief the difficulties in robotic benchmarkinga number of recommendations

has been suggested.

Recommendations

Somerecommendationsemphasize stronger focus on elaborated methodologies for experi-

ments, like the proposed ones in the GEM guidelines [36]. These guidelines started being adopted

to subfields for example in the SLAM domain like [39] or [40]. To produce comparable results, the

experiments must be well documented. Some ways to compare different algorithms are proposed

by [34] and [37]:

1. Use the same source-code. This is not always possible as authors might not be willing or

are not allowed to distribute the code. Even if the authors are willing to share their code

they might not have it any more or they cannot reproduce the version that was used for

the experiments. A solid backup and versioning strategy forevery software development

alleviates the latter issues.

2. Re-implement code by descriptions in papers. This is difficult for various reasons: first

this might be a very time consuming process and sometimes it is even not possible because

of hidden assumptions or undocumented parameter settings.Thus the description of all

parameters and assumption should be as complete as possible.

3. Compare the results with those listed in previous publications. This is the easiest, but cer-

tainly the weakest approach as the comparability for example in processing time on different

20

Chapter 3. STATE OF THE ART

hardware is questionable. If the used systems would be benchmarked with a performance

benchmark (e.g. drystone/whetstone30, LINPACK31, etc), this would give information

about the used test-bed. To make the published result more comparable, they could be nor-

malized with these performance benchmarks. One example of using normalized results is

shown in the DIAMCS Traveling Salesman Problem Challenge32, where all new produced

results are measured relatively against existing ones, which allows for normalization.

Beside the pure comparison it is important for a benchmarking paper to explain and justify

the presented results. That means it should always be tried to explain why something performs

better than something else.

To conclude this section, benchmarking in robotics is vitalto get access tobest practice

components in robotics, because it forms the basis of comparison. Systematic comparison of

robotic systems is an emerging research field, as indicated by various kinds of current research

efforts like competitions and challenges, simulation platforms, public shared data sets, definition

of common performance metrics, dedicated conference tracks, research coordination initiatives.

Establishment of good methodologies and easy comparable result is a difficult task in robotics,

because of the substantial difference in hardware or software. Especially benchmarking on a

component based level has no standardized way of comparison, as harmonized software interfaces

are non existing. This also holds true for algorithms in the domain of 3D perception and modeling.

3.2 Algorithms for 3D perception and modeling

This Section reviews related work in the subfields of the 3D perception and modeling do-

main, presented in Section2.3. The focus of the survey is on the registration and the mesh gener-

ation process, but filtering and segmentation methods are also briefly discussed.

Filtering

A filter is an algorithm that is able to process a data stream, in this case point cloud data.

For 3D perception and modeling, there are three major filtering techniques for point clouds:noise

reduction, size reductionandnormal estimation.

A noise reductionfilter tries to cope with noisy measurements from a depth perception de-

vice. To reduce ”salt and pepper noise”, [41] uses amedian filterthat takes seven index neighbors

in a laser scan into account. A source for this noise is if a laser beam partially hits an edge and

is reflected by two surfaces. [42] uses smoothing techniques for point clouds based on estimated

30http://www.netlib.org/benchmark/
31http://www.netlib.org/linpack/
32http://www.research.att.com/ ˜ dsj/chtsp

21

http://www.netlib.org/benchmark/
http://www.netlib.org/linpack/
http://www.research.att.com/~dsj/chtsp

Chapter 3. STATE OF THE ART

normals and a robust hyperplane projection.

The size reduction filter is a possibility to improve the computational time foran algo-

rithms. The less input an algorithms has, the faster it is. TheOctreedecomposition is the de-facto

standard to reduce point cloud data [25]. It uses a recursive subdivision of cubes, until a dis-

cretization threshold is reached. The input data is approximated by the center of the cells. [41]

use astandard reductionfilter to replace dense grouped points by their mean value. This filter in-

corporates laser scanner characteristics that have a more dense representation the nearer an object

is to the source of a leaser beams. ThePICKY ICPby [43] takes a subset of points in the point

cloud for matching process. The selection strategy uses representative points that are taken from

a hierarchically clustering.

A filter for normal estimation calculates normals of for the points in a point cloud, such

that the normals represent the plane normal of a underlying patch of the surface. It is needed for

various algorithms like for registration methods [44], for segmentation [19] and for mesh genera-

tion algorithms like [45], [46] or [47]. The approach of [48] approximates the normal by a surface

that is formed by thek-Nearest Neighborhood of a query point. After a Principal Component

Analysis (PCA), the vector with smallest eigenvalue servesas the estimated normal. [49] uses

k-Nearest Neighborhood in combination with plane fitting. More robust fitting methods have been

proposed by [19], which use a MLESAC method, inspired by the approach of [50], to estimate

the normals. [51] use a least square fitting approach applied to thek-Nearest Neighborhood. The

authors conclude that the accuracy of the normal estimationusing a total least square approach

depends on the noise in the point cloud, the curvature of the underlying surface, the density and

distribution of the points and the neighborhood sizek.

Registration

In the registration process, scene captures from differentviewpoints are merged into one

common and consistent coordinate frame. This survey concentrates on registration of static envi-

ronments, that means deformable or articulated objects arenot taken into account. Registration of

point clouds can be performed either in aglobal or a local fashion.

Global strategies for registration involve genetic algorithms like [52], or evolutionary com-

putation approaches [53]. As these registration methods are computational expensive they are

uncommon for applications in the robotics domain, as (near)real-time capabilities are important.

A recent development:HSM3D (Hough Scan Matched in 3D)[54], uses the Hough transform

for a global registration. As comprehensive experiments have not been performed yet, it remains

unclear how competitive this solution is compared to other existing approaches. Therefore, most

efforts have been spend onlocal registration techniques.

The most prominentlocal registration algorithm is theIterative Closest Point (ICP). The

22

Chapter 3. STATE OF THE ART

original ICP version was invented by [26] and [27]. Since then various improvements have been

made that mostly address thecorrespondence problemof finding corresponding point pairs in two

point clouds and therigid transformation estimationproblem. Both problems are the atomic ele-

ments the ICP (cf. Algorithm2.1step 2 and 3 in Section2.3.3).

The research efforts in finding thepoint-to-point correspondenceshave addressed either

improvements in therobustnessor thecomputationalcomplexity.

Approaches to increaserobustnessthat means that the point-to-point relations are correctly

calculated, typically enhance the spacial information of apoint by additional information like in-

tensity [55], color [56] or point normals [44]. The calculation of distinctive features in point clouds

to deliver an approximate initial alignment is applied by [57] and [58]. Recent efforts developed

thePoint Feature Histograms (PFH)[59] which is demonstrated in [19] The PFH is an informative

pose-invariant local feature, which represents the underlying surface model properties of a point.

The resulting distinctive feature descriptor bases on angular relation of thek-Nearest Neighbor-

hood expressed with a Darboux frame in combination with the Euclidean distance. An improved

version calledFast Point Feature Histograms (FPFH)has been presented by [60]. The authors

conclude that the Euclidean distance information has only aminor influence on the expressiveness

on the descriptor, and thus can be neglected. [61] improves robustness for the correspondence

problem, by computing a rough initial transformation guesswith an Extended Gaussian Image

(EGI) and a rotational Fourier function.

Various improvements that addresscomputational complexity for the ICP have been pro-

posed by [62]. As computation of a point-correspondence typically involves a Nearest Neighbor

search, all improvements of the more generalk-Nearest Neighborssearch problem can help to

speed up the ICP algorithm. The goal is to fasten up the extensive search through the solution

space to find the closest entities to a search query. A naı̈ve solution has a complexity ofO(n2), as

every point is compared to every other point in a cloud.

A widely used solution to reduce complexity ink-Nearest Neighbors problems the is usage

of k-d trees. Possibilities for optimization of k-d trees are the different splitting and merging rules.

[25] describes that splits performed at the longest axis of the point clouds, which ensure compact

volumes, are the most promising policy to yield an optimizedk-d tree for the ICP, with a reduced

complexity toO(kn log n). Further improvements of the k-d tree for the ICP is thecachedk-d

tree [63]. It starts searches in following iterations at the leaves of the tree. This advantage can

only be gained if a Nearest Neighbor search is invoked several times, as it is the case for the ICP.

Despite the processing time improvements, the memory consumption is slightly higher. The k-d

tree works best for low dimensional data, as it is the case for3D point clouds.

A k-Nearest Neighbors search algorithm for higher dimensionshas been proposed by [64].

It is an approximated search withBalanced Box-Decomposition Trees (BD-Trees)that require less

23

Chapter 3. STATE OF THE ART

operations than searching a regular k-d tree. The implementation is also known asANN library.

[25] showed that the k-d tree slightly outperforms the BD-tree for dimension three.

The use ofmultiple randomized k-d treeshas been proposed by [65] and [66]. For high

search space dimensions it tends to be faster than a single k-d tree. [67] present thespill tree for

Nearest Neighbor search, though therandomized k-d approachis faster and less memory intensive.

The concept ofhierarchical k-meansis used by [68] in their vocabulary tree approach. Sim-

ilar to this, [69] present a novel improvement of thek-means clusteringalgorithms by exploiting

priority queue based search instead of depth first search. They also propose theFLANN library

that automatically detects the best suitable algorithm. Two variants are selected as the result of

minimized cost function of the parameters: eitherhierarchical k-meansor multiple random k-d

trees. Their parameter selection is inspired by [70] and [71]. However, the presented results are

only performed with high dimensional data sets.

[72] present theSTANNlibrary. The implemented algorithm tries to exploit paralleliza-

tion techniques to get a performance speedup fork-Nearest Neighbors search on multi-core and

multi-processor hardware architectures. The algorithm bases on thez or Morton ordering that

means the data is sorted according to this, before searchingthek-Nearest Neighbors is performed.

The construction of this ordering is reduced to a bit-wise comparison to further gain performance

improvements. The results where performed on different hardware architectures with slightly dif-

ferent setups (number of threads). The proposed algorithm seems to outperform theANN library,

on appropriate hardware. [73] uses theCUDA framework33 to accelerate the Nearest Neighbor

search on a Nvidia graphics adapter. The authors’ experiments show that the GPU34 version is88

times faster on their test-bed than the k-d tree based sequential version. [74] also exploits GPU

acceleration for construction of k-d trees.

Note that some of the approaches above are general solutionsof k-Nearest Neighbors

searches and can be used beyond the scope of the ICP algorithm. There are methods that ad-

dress computational complexity, which are dedicated to be used for the matching processes with

ICP. For example one approach is to exploit semantic information like walls, floors or ceilings, as

seen in [75]. Results show that computational time can be up to30% faster. [76] presents a concept

of a parallel ICP calledpICPwhere the correspondences are calculated in distributed manner. [77]

combined anpICP implementation based on theOpenMP35 technology with acachedk-d tree.

The author was able to exploit hardware specific characteristics and strongly coupled algorithm

internals to speed up the registration process.

Along with the improvements for computational complexity,the computation of therigid

transformation estimation is an important step for the ICP algorithm: As depicted by [25], four

33Compute Unified Device Architecture. Software framework for parallel computing on Nvidia graphic adapters.
34Graphics Processing Unit. This is the equivalent to a CPU that is embedded on a graphics adapter. It is specialized

on 3D rendering.
35Cross platform programming interface to create parallelized applications.

24

Chapter 3. STATE OF THE ART

closed-formvariants exist. Each algorithm tries to estimate a transformation that minimizes the

cost function in Equation2.2. The first variant is aSingular Value Decomposition (SVD)based so-

lution that is directly derived from the(R, t) representation of the transformation [78]. The second

variant exploits orthonormal properties of the rotation matrix in combination with aneigensytem

[79]. The third version uses aunit quaternionin combination with computation ofeigensystem

[80]. The forth closed form solution variant incorporates adual quaternionrepresentation [81].

The authors of [82] have compared the four solutions. They conclude that all algorithms have

about the same accuracy with respect to stability and noisy data.

Beside the closed form solutions,approximatedestimation approaches exist. One method

is based onhelical motionproposed by [83] and applied by [19]. It uses instantaneous kinematics

that means it uses a point-to-surface, rather than a point-to-point metric. A possible disadvantage

is that the method only works reliably for small displacements of the point clouds. [25] denotes

that this algorithms will take more iterations, as it is an approximation. The author also contributes

an approximated rigid transformation estimation bases on alinearized rotation.

Although the ICP can be regarded as the de-facto standard forregistration, other approaches

can solve the registration problem. [84] just use the poses, deuced from their visual localization

system, to transform the scenes data into one common coordinate frame.

A recent development is the probabilisticNormal Distributions Transform (NDT)[85]. It

uses combinations of normal distributions, rather than single points in a cloud. Each distribution

describes the probability to find a part of the surface at any point in space, thus resulting in a

smooth representation of a point cloud. Standard numericaloptimization techniques are applied

to compute the registration. As a grid structure is used, accuracy suffers from discretization, but a

triliniear interpolation can increase accuracy with the sake of performance loss in computational

time. A comparison of ICP and NDT [40] shows that the pure NDT is slightly faster than ICP and

the convergence seems to be better. But ICP behaves more predictable with respect to noise in the

initial alignment. The triliniar NDT, with a higher accuracy, is slower than the ICP.

Segmentation

The segmentation process tries to partition the scene modelinto sets that belong to different

objects. Often 3D models of special shapes, like boxes, cylinders or balls are fitted into these

regions to model the perceived objects. Common segmentation criteria arenormalsof the points

in a point cloud [22]. [19] perform a segmentation of a kitchen-like environment. They also use

normals to classify regions and later fitting of cuboid primitives to represent dashboards. Model

fitting is also performed by [23], as they try to detect buildings in a reconstruction process for large

environments. [86] use a sampling technique to find basic shapes like planes, cylinders, cones and

tori in a point cloud.

[87] segment trees in an outdoor environments, to use them as stable features for naviga-

25

Chapter 3. STATE OF THE ART

tion. [88] use range images for segmentation, in combination with color information, for their

autonomous exploration application.

The segmentation approach of [89] first performs a decomposition of space into regular

cubes, then it tries to find planes with the use RANSAC principle. Finally a refinement step with

a region growing strategy is applied. Further segmentationmethods base on edges [90], curvature

estimates [91] or smoothness constraints [92].

Mesh generation

Mesh generation techniques that are able to create a surfacemesh, can be roughly catego-

rized into two predominant directions. The first usesimplicit surfacesand the second relies on

Delaunay triangulation, resulting in a polygonal mesh representation of the surface.

Pioneering work in the field ofimplicit surface modelingwas done by [49]. Tangent planes

are fitted into local neighborhoods, then a marching cubes algorithm is used to compute the com-

plete surface. [93] exploit the medial axis of the point set to improve implicitsurface generation. It

shows good results with reconstruction of geometrical complex objects. [94] propose a multi level

partition approach, where the space is partitioned with an Octree and the local surface in a cell is

approximated with a quadratic function. A wighting function blends the local patches together.

The approach of [46] and [47] uses theRadial Basis Function (RBF)as implicit function

for splines. It creates the surface with a smoothing filter kernel that can cope inherently with noisy

data sets. [89] propose a method that first segments the space with an Octreeinto smaller cells,

similar to [94], and then a plane is fitted in the points of each cell. Finallythe planes of the cells

are merged into one coherent surface. This approach is designed for robotic indoor applications

and has thus a focus on fast reconstruction. [84] capture the same idea of this approach, for an

autonomous outdoor exploration application.

Some algorithms needestimated normalsin the point cloud, for example thePoisson re-

constructionmethod by [45]. Unlike approaches withRadial Basis Function (RBF), it considers

the whole point cloud at once. The generated output is a smooth curvature, even in presence of

noise in the data sets. TheAlgebraic Point Set surfaces (APSS)algorithm [95] uses marching

cubes in combination with a robust projection step, finalized by local fitting of spheres.Robust

Implicit Moving Least Squares (RIMLS)[96] is similar to APSS, but it is able to better preserve

sharp features on the surface.

Many approaches for surface mesh generation are based on theDelaunay triangulation.

[97] contributes fundamentals for mesh generation algorithmsby analyzing the properties for com-

mon geometric representations, including partitions withthe Delaunay criterion. The author in-

troduces the strategy to label tetrahedrons intoinsideandoutsidesimplices. This categorization

allows to deduce the surface of an object. TheCRUSTalgorithm [98] uses Voronoi and Delau-

nay structures to create a surface mesh. But it has to performa post-processing step, where point

26

Chapter 3. STATE OF THE ART

normals have to be estimated. TheCOCONE[99] method is a theoretical and practical improve-

ment ofCRUST, because it does not need to estimate normals.COCONEexploits the labeling the

strategy as presented by [97]. CRUSTandCOCONEdo not producewatertightsurface meshes.

A watertightsurface means that the boundary of an object is the closure ofthe object. In other

words it has no holes in the mesh. But as trade-offwatertight meshes might approximate the

surface less well.PowerCRUST[100] produceswatertightsurfaces. It is based on a power dia-

gram, rather then tetrahedrons. During its processing stepit adds additional vertices (that satisfy

the power distance criteria), which leads to a higher memoryconsumption. The smoothing and

reconstruction might be computationally expensive.TightCOCONE[101] reliefs the burden of the

extra points compared toPowerCRUST. First it runs theCOCONEalgorithm, then it refines the

output by peeling off the asoutsidelabeled simplices. The result is awatertightsurface. Further

improvements have been made with respect to noisy point clouds with theRobustCOCONEalgo-

rithm [102] that is provable more robust to small errors and theEigenCRUST[103] algorithm that

can better handle noisy data.

The well knownα-shapes algorithm by [104] is also based on the Delaunay triangulation,

which is further refined by only including some simplices that conform to theα criterion. All

simplices that intersect some sphere that does not include any points of the point cloud are carved

away. The radius of the sphere is the squaredα value. Theα-shape algorithm is most suitable for

uniform sampled point clouds.

Recent developments exploit further information than the pure point clouds. ThePro-

FORMAapproach [24] uses a single camera only, while a user has to rotate an object, which will

be modeled. First a Delaunay tetrahedralization is calculated, then triangles are probabilistically

carved away based on the visibility. Finally textures are added to the surface.

Labatut et al. [105] use camera images to create a first rough shape approximation, called

visual hull. Afterwards the Dalaunay tetrahedra are labeled as empty oroccupied, with respect to

thevisual hull. The result is a triangle mesh of the surface.

Other approaches that are independent of Delaunay triangulations have been proposed.

[106] presents the ball-pivoting algorithm. It is a region growing strategy with a pivoting ball

that can reconstruct a triangle mesh out of a point cloud, starting from a seed triangle. The Frontal

Algorithm by [107], inspired by [108], calculates special points, and then the mesh is generated

according to a rule set. An interesting contribution is the work of [109], as they developed an

approach to measure how similar different meshes are. This is possibly a valuable contribution

to compare the output of different mesh generation algorithms, to deduce thebest practiceap-

proaches.

27

Chapter 3. STATE OF THE ART

3.3 Public available libraries for 3D perception and modeling

This section surveys existing software libraries that are related to the 3D perception and

modeling domain, biased towards the application in a mobilemanipulation task. A library was

selected for further investigation if one or more of the following requirements can be met:

• The library supports algorithms in the 3D perception and modeling domain. That means

it can offer functionality fordepth perception, filtering, registration, segmentation,mesh

generationor visualization.

• The library supports data-types that are essential for thisdomain.

• The library is a potential user of the output data-types. As this library survey is biased

towards mobile manipulation tasks, a library that can use the generated models for motion

planning, collision checking, etc. is a good candidate for investigating the used data-types.

This is motivated by the harmonization idea that shall foster the reuse of software in different

contexts. In the mentioned mobile manipulation application the context would shift from the

3D perception and modeling domain to the mobile manipulation domain, but the data-types

should remain the same.

Further motivation for selection is public availability, in the sense of open source. A closed

source library, as it is intrinsic by definition, cannot be investigated, reused, refactored and finally

re-published as open source software. A more relaxed requirement is the platform independence

of the operating system. All libraries are implemented in C/C++ as this is the predominant pro-

gramming language for computational expensive algorithmsfrom the 3D perception and modeling

or even the robotics domain. The libraries are roughly ordered with respect to the processing steps

(cf. Figure2.4).

6DSLAM

The6D Simultaneous Localization and Mapping (6DSLAM)library36 implements methods

to solve the SLAM problem with six degrees of freedom that mean for a 3D position and 3D

orientation. The library is based on the work of [25] and was chosen because of the implementation

of various ICP variants including a cached [63] and a parallel k-d tree as an efficient way to address

the correspondence problem.

MRPT

TheMobile Robot Programming Toolkit (MRPT)37 is a library that allows to create appli-

cations for robotic tasks. Therefore it comprises functionality for obstacle avoidance, SLAM or

motion planning. With an implementation of the MonoSLAM [18] algorithm it is able to perform

36http://slam6d.sourceforge.net/
37http://babel.isa.uma.es/mrpt/index.php/Main_Page

28

http://slam6d.sourceforge.net/
http://babel.isa.uma.es/mrpt/index.php/Main_Page

Chapter 3. STATE OF THE ART

depth perception with a single camera only. The MRPT libraryalso includes an implementation

of ICP, which forms the main reason for selection.

IVT

The Integrating Vision Toolkit (IVT)38 is a library with a focus on computer vision. It

supports algorithms for stereo reconstruction, blob feature detection like SIFT and it has an ICP

implementation. Especially the latter one is the motivation for selection.

FAIR

TheFraunhofer Autonomous Intelligent Robotics Library (FAIR)39 was initially developed

by the Fraunhofer-Institut für Intelligente Analyse- undInformationssysteme (IAIS) as a software

package for theVolksBot[110] research project. The library supports many filtering algorithms,

has an ICP implementation and offers drivers for depth perception like a laser scanner or Time-of-

Flight camera interfaces. The presence of the previously mentioned algorithms which are specifi-

cally designed for robotics are the main reason why this library is included into the survey.

ROS

The Robot Operating System (ROS)40 is a complete environment for robotic applications,

rather than a traditional software library. It offers a middleware in the sense of a network of

distributed computers that appears to the user as one coherent system [111]. So calledROS nodes

communicate to each other viamessagesandservices. The formats of these messages are defined

in special text files, and can be seen as a standardized data-types in the ROS environment. ROS

has a set of tools that make the programming easier, for example therosmaketool is able to resolve

dependencies to other ROS modules. The build process is alsoable to automatically transfers the

messagedefinitions into source code.

The algorithms and functionality can be found in different repositories, which results in a

huge amount of functionality. Software is organized inpackages, which are grouped thematically

into stacks. For depth perception for example alaser pipelineis offered that is able to assemble

point clouds. Different filtering techniques like normal estimation, ICP for the registration and

several segmentation algorithms are available. But there is (yet) limited mesh generation function-

ality. As ROS hasstacksfor mobile manipulation planning algorithms it also servesas a potential

user of triangle meshes.

The ROS software is not fully platform independent, as it only supports Linux derivates

and Mac OS X. Windows is not natively supported, but the underlying build system uses the

platform independentCMakebuild system, thus there are no conceptual barriers to port the code

to Windows.
38http://ivt.sourceforge.net/
39http://sourceforge.net/projects/openvolksbot/
40http://www.ros.org/wiki/

29

http://ivt.sourceforge.net/
http://sourceforge.net/projects/openvolksbot/
http://www.ros.org/wiki/

Chapter 3. STATE OF THE ART

ROS is currently one of the most important open source projects for robotics, so the se-

lection for investigation is obvious. Please note that the investigated version is v0.7. As ROS is

a rapidly changing and evolving project, some of the previous mentioned statements might get

obsolete.

VTK

TheVisualization Tool Kit (VTK)41, developed by Kitware Inc.42, is a software for 2D and

3D data processing and visualization. It has its main application in biomedical imaging, like

for example visualization of regions of the brain. The library has implementations for polygon

reductions, implicit modeling and Delaunay triangulation. It is selected here because it supports

mesh generation algorithms.

ITK

As extension to VTK theInsight Segmentation and Registration Toolkit (ITK)43 supports

registration and segmentation algorithms for images. Although the tool kit uses images as data-

types, most algorithms allowsn-dimensional data as input. As it implements the registration and

segmentation stages it is chosen as a suitable library for the 3D perception and modeling domain.

Meshlab/VGC

Meshlab44 is a program for manipulation and interactive editing of 3D models. It is based

on the core library for mesh processingVGC45. The VGC library is developed by the Visual

Computing Lab46 of the ISTI - institute of the Italian National Research Council. Meshlab has

implementations for mesh cleaning, reduction re-meshing,mesh generation and registration by

the ICP algorithm.

Although segmentation techniques are limited to non-automatic procedures that means user

interaction is required, the numerous supported data-tapes, the rich functionality with respect to

meshing and the presence of registration functionality lead to the selection of Meshlab/VGC.

CGAL

TheComputational Geometry Algorithms Library (CGAL)47 is one of most important open

source projects for algorithms in the computational geometry domain. Thus it supports algorithms

for 2D and 3D triangulations, including Dalaunay triangulation andα-shapes, Poisson surface

reconstruction, mesh simplification, mesh subdivision, normal estimation and many more. As

41http://www.vtk.org/
42Kitware Inc. also develops theCMakebuild system.
43http://www.itk.org/
44http://meshlab.sourceforge.net/
45http://vcg.sourceforge.net/index.php/Main_Page
46http://vcg.isti.cnr.it/joomla/index.php
47http://www.cgal.org/

30

http://www.vtk.org/
http://www.itk.org/
http://meshlab.sourceforge.net/
http://vcg.sourceforge.net/index.php/Main_Page
http://vcg.isti.cnr.it/joomla/index.php
http://www.cgal.org/

Chapter 3. STATE OF THE ART

this library serves a rich functionality for mesh generation it is a reasonable candidate for further

investigation within this work.

Gmsh

Gmsh48 is a modeling tool with graphical user interaction. Its mainpurpose is to easily

manually create 3D meshes. To assist the user it offers some filtering techniques like the Octree

reduction or meshing algorithms like Delauny triangulation. Beside the filtering and registration

capabilities this tool was chosen, because it implements various kinds of data-types for 3D models.

Qhull

The Qhull49 library implements thequick hull50 algorithm for generation of a convex hull

of a point set. It has meshing algorithms for Voronoi digramsand Delaunay triangulation. This

and the fact that it is already iterated into the BRICSMM library motivates the consideration of

this library.

OpenSceneGraph

TheOpenSceneGraph (OSG)51 project is a powerful library for 3D model visualization. It

is essentially an object-oriented wrapper for the platformindependentOpenGLinterface. OSG

has the concept of ascenegraphthat means data is stored in a hierarchically manner by a tree

structure. The nodes store either 3D data, which are then called Geodes(stands for Geometry

Node), or references to child nodes. With this approach it is possible to arrange geometries. For

example in a kitchen-like environment a cup, a table or a dashboard could be each captured by

a different node, whereas the root note represents the kitchen environment. Even if the same

geometry like for a dish needs to be applied several times, the data that describes the geometry,

does not need to be duplicated as the encapsulating node could be referenced multiple times, but

with different pose information [112]. Theses abilities are certainly useful for the robotic domain.

OSG was chosen for this work, because of the features mentioned above, the good sup-

port for different operating systems, and because it is already successfully integrated into the

BRICS MM library.

CoPP/BRICS MM

TheComponents for Path Planning (CoPP)library52 is a framework for mobile manipula-

tion planning algorithms, initially developed by [113]. This library is a potential user of the output

48http://www.geuz.org/gmsh/
49http://www.qhull.org/
50What the quick sort is for sorting problems, is the quick hullfor convex hull generation.
51http://www.openscenegraph.org/projects/osg
52http://sourceforge.net/projects/copp/

31

http://www.geuz.org/gmsh/
http://www.qhull.org/
http://www.openscenegraph.org/projects/osg
http://sourceforge.net/projects/copp/

Chapter 3. STATE OF THE ART

data from the 3D perception and modeling domain. The reconstructed 3D objects and environ-

ments could serve as input for the planning facilities of CoPP. Parts of the CoPP library have been

refactored or reused by the BRICSMM library. Both libraries share the same data-type for trian-

gle mesh representation. Please note that BRICSMM is not yet available as open source software

therefore it is not listed as a separate entry in this survey,but it will be made public in the near

future.

Openrave

Openrave53 is similar to CoPP or BRICSMM. It is a simulation framework for mobile

manipulation algorithms. As for CoPP and BRICSMM, Openrave might be a potential user of

3D models, encoded as a triangle meshes for planners or collision checkers.

KDL

TheKinematics and Dynamics Library (KDL)54, is a library to model rigid body kinematic

chain representation and calculation, and thus is more related to manipulation rather than 3D

perception and modeling. KDL is a part of theOrocos55 software component framework for

robotic tasks. The motivation for selection is that KDL is a robotic library that heavily deals with

3D points and frame transformations. It is worth to look, howthe library represent basic data-types

like 3D points.

ANN

The Approximated Nearest Neighborhood (ANN)56 library is a well known library fork-

Nearest Neighbor search, developed by [64]. It focuses on efficient high-dimensionalk-Nearest

Neighbor search tasks. The Nearest Neighbor search is a commonly used sub-algorithm for many

algorithms, like for example normal estimation or as solution for the correspondence problem in

the ICP algorithm (cf. Algorithm2.1, line 2). ANN is chosen for two reasons: first it implements

a state-of-the-art solution fork-Nearest Neighbor search and second it often serves as reference

for comparison for more recent approaches, as for example in[25] or in [69].

FLANN

TheFast Library for Approximate Nearest Neighbors (FLANN)57 is a recently developed so-

lution by [69] for thek-Nearest Neighbor search. It has implementations for hierarchical k-means

or multiple random k-d trees. The FLANN library has a remarkable feature: it automatically de-

tects the best suitable search algorithm. This is interesting, as the library has to use metrics to

53http://openrave.programmingvision.com/index.php/Mai n_Page
54http://www.orocos.org/kdl
55http://www.orocos.org/
56http://www.cs.umd.edu/ ˜ mount/ANN/
57http://people.cs.ubc.ca/ ˜ mariusm/index.php/FLANN/FLANN

32

http://openrave.programmingvision.com/index.php/Main_Page
http://www.orocos.org/kdl
http://www.orocos.org/
http://www.cs.umd.edu/~mount/ANN/
http://people.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN

Chapter 3. STATE OF THE ART

determine which algorithm fits best. This has a strong synergy to the concept of identifying what

is best practiceby measuring the performance of algorithms.

STANN

The Simple, Thread-safe Approximate Nearest Neighbor (STANN)58 library for k-Nearest

Neighbor search addressed the computational complexity ofthis problem by exploiting parallel

computation with multiple threads. This library is included in this survey as it implements an

efficient solution fork-Nearest Neighbor search on modern computer hardware that tends to have

more and more parallels computing facilities.

Comparison table

The following comparison table (cf. Table3.1) summarizes all libraries and indicates which

stage(s) of the 3D perception and modeling stages they support. There is an additional column to

clarify which version is used. This is important as the presented libraries might have changes in

the future and some facts or statements about them might get obsolete. There are also columns

to show if a library was developed with a robotic context in mind, or if it might serve as a ”user”

of the used data-types of the 3D perception and modeling domain. Please note that there is no

single library that has all processing stages for 3D perception and modeling domain implemented.

The presented libraries will serve as a foundation to find harmonized data-types and interfaces for

reusable and measurable software modules. By benchmarkingthose modules thebest practice

algorithms for 3D perception and modeling shall be identified.

58http://sites.google.com/a/compgeom.com/stann/

33

http://sites.google.com/a/compgeom.com/stann/

C
hapter

3.
S

TA
T

E
O

F
T

H
E

A
R

T

Table 3.1: Summary of public available libraries and their contribution to the 3D perception and modeling domain.

Library Version Depth Filtering Registration Segment- Mesh Visual- Potential Robotic Notes
perception ation generation ization user library

6DSLAM v1.0 ! ! ! - - ! - !
MRPT v0.7.1 ! - ! - - ! - !
IVT v1.3.5 ! -* ! - - -* - - * = only 2D

Fair rev4 ! ! ! -* - ! - ! * = only 2D

ROS v0.7 ! ! ! ! - ! ! !
VTK v5.4.2 - ! - - ! ! - -

ITK v3.16.0 - ! ! ! - - - -

Meshlab v1.2.1 - ! ! - ! ! - -

CGAL v3.4.0 - ! - - ! -* - - * = usesgeomview,
which is only

available for Linux

Gmsh v2.4.2 - ! - - ! ! - -

Qhull rev444 - - - - ! - - - already integrated
into BRICSMM

CoPP/BRICSMM rev444 - - - - - ! ! ! user of triangle mesh

openrave ? - - - - - ! ! ! user of triangle mesh

OSG v2.8.2 - - - - ! ! - - hasscenegraphconcept

KDL v1.0.0 - - - - - - ! ! user of 3D point
ANN v1.1.1 - - - - - - - - k-NN Search

FLANN v1.2 - - - - - - - - k-NN Search
STANN v0.71a - - - - - - - - k-NN Search

34

Chapter 4

CONCEPT

In this Chapter the process of identifyingbest practicealgorithms is explained. First the general

approach is depicted, then it is applied to the domain of 3D perception and modeling.

4.1 Basic Approach

The presented approach is inspired by the work of [21]. The process of identifyingbest

practicealgorithms can be categorized into different phases. Thereare five steps:Exploration,

Harmonization, Refactoring, Integration andEvaluation. The goal of this process is to have a

framework of software components that allows to replace atomic elements to easily create a set

of benchmarks that enables to compare and judge the algorithms. These benchmarks are the base

for impartial deduction ofbest practicefor a given task. Summarized in one sentence: ”Software

engineering principles will be applied to existing algorithms to make them easier to compare”.

4.1.1 Exploration

In the Exploration phase, knowledge about the algorithmic domain has to be acquired.

Without a solid understanding of the field, decomposition ofalgorithms into atomic and reusable

parts would be impossible. To gather information about the domain astate-of-the-art literature

survey has to be conducted. The results of the survey for algorithmsfor 3D perception and mod-

eling can found in Section3.2.

As the goal of this approach is to refactor existing algorithms, a survey aboutstate-of-the-

art software libraries that implement relevant algorithms has to be performed. Thefound libraries

form the basis of analysis and refactoring of common data-types and common algorithms. Note

that this approach is limited to open-source public available libraries. If predominant algorithms

are not available as source code, algorithms might have to bereimplemented by their description

in the literature, as long as the description is expressive enough and no hidden assumptions are

unspecified. Section3.3 lists recent libraries that contribute to the 3D perceptionand modeling

domain.

4.1.2 Harmonization

The Harmonizationphase tries to find harmonized data-types and interfaces foratomic

elements. It can be further subdivided into the three following steps:

35

Chapter 4. CONCEPT

1. Identifycommon data-types. Identify the commonly used data-types, then investigate how

they are represented in existing libraries. The attributesand functionality that is commonly

used by existing libraries will form the requirements for the harmonized data-type. These

requirement will have to be met in theRefactoringandIntegrationstep. That means it must

be implemented. The harmonized data-types will be reused for the harmonized interfaces

for algorithms. Requirements for harmonized data-types needed for 3D perception and

modeling applications are presented in Section4.3

2. Identifyblack-boxes. This is the step of de-modularizing algorithms into atomicelements.

The knowledge how they are decomposed comes from theExploration phase. The most

common modules shall be found and represented as stand alonemodules. In this work

these modules are represented as UML software component diagrams. The design choices

should be driven with openness and flexibility in mind. Section4.4shows the most common

black-boxes for 3D perception and modeling.

3. Identify commoninterfaces. The atomic elements identified in the previous step need to

communicate to other atomic elements. To get access to a component one has to use a set

of interfaces. These interfaces should be harmonized to be reusable. One important aspect

here is that different clients need different interfaces. For example a potential user just needs

the very basic interface that is most convenient to use, but another user needs to know about

more internal details of an algorithms. In this case different interfaces should be offered.

Harmonized interfaces for algorithms of the 3D perception and modeling domain can be

found in Section4.4.

All algorithms and data-types are designed with a potentialuser of in mind, like for exam-

ple a mobile manipulation planning library that needs a 3D model of the environment to create

paths or trajectories for the hardware platform. To foster openness, flexibility and reusability of

the refactored algorithms, a modularization is aspired with respect to the principlesCoordination,

Configuration, Computation, andCommunication(4Cs) [114, 115, 116]. The aspect ofCom-

putation describes the implemented behavior, in this case an algorithm from the 3D perception

and modeling domain. TheConfigurationdefines whichComputationsare performed that means

which algorithms or sub-algorithms are actually used to solve a certain problem.Communication

describes how and what theComputationunits communicate with each other. Typically data-types

are the entities which are communicated between algorithms. Coordinationcan be seen on a more

abstract level as it specifies whenCommunicationmust take place. Applied to the 3D perception

and modeling domain that could mean that a particular algorithm is only invoked in specified sit-

uations. For example a robot does not need to have have precise model for grasping a cup while it

has not yet reached the kitchen, where the cup is located.

36

Chapter 4. CONCEPT

The process of modularization, decoupling and abstractingto more general interfaces cer-

tainly involves trade-offs between usability or generality and highly coupled or optimized algo-

rithms. But as the intention is to findbest practicealgorithms the decoupling has a higher priority

over highly optimized algorithms. However, in a robot development process an optimization step

might follow after the best practice algorithms have been determined for a specific application.

4.1.3 Refactoring

The Refactoringstep can be characterized byfilling black boxes with life. That means

the desired behavior for an algorithm must be defined by implementing it. One possible solution

is to create a wrapper or adapter [9] to an algorithm from an existing library, which are already

known from theExplorationphase. If this is not possible, the behavior must be completely reim-

plemented. The outcome of theRefactoringphase for 3D perception and modeling is presented in

Chapter5.

4.1.4 Integration

In preparation of benchmarking the implemented algorithms, they need to beintegrated

into a test-bed. This test-bed might be a real robot, a simulation frameworkor a software frame-

work that can prepare data sets to be used as input for a benchmark. The goal is to embed the

algorithms into an environment that allows to get access tobest practice. Although the efforts to

integrate algorithms to existing frameworks or libraries are typically time consuming, they give

insights about how well the harmonized data-types and interfaces cooperate with existing code.

From a developers point of view theRefactoringandIntegrationdetermine the main work during

software development. Integration of the 3D perception andmodeling algorithms is performed, in

the form of a library calledBRICS3D, which contains the refactored algorithms and capabilities

to use data sets for benchmarks. Details about theIntegrationare shown in Section5. Section6.1

gives further information about the used test-bed.

4.1.5 Evaluation

The final step is theEvaluationor benchmarking of the refactored and harmonized algo-

rithms. These benchmarks can be performed on a real robot, within a simulation framework or

with recorded or artificial data sets. Details about the methodology of benchmarking in robotics

is currently a research subject on its own, as mentioned in Section 3.1. As the BRICS project will

make the refactored algorithms public, the code can be used to producecomparablebenchmarks,

as new algorithms can be integrated into the BRICS3D library and compared to previous results.

Also the problem ofrepeatabilitycan be relieved as everyone can download the code and re-run

the benchmarks. An initial set of benchmarks for 3D perception and modeling, with data sets, is

presented in Chapter6.

37

Chapter 4. CONCEPT

4.2 Review of 3D perception an modeling elements

The domain of 3D perception and modeling can be subdivided into several subcategories

(cf. 2.3): depth perception, filtering, registration, segmentation,mesh generationandvisualiza-

tion. Arranged as a reconstruction pipeline, it can transform 3Dpoint clouds into triangle meshes.

All algorithms have to work on the same data-types and therefore it is beneficial to have harmo-

nized data-types for Cartesian point clouds and triangle meshes. The harmonized data-types shall

enable reusability in other robotic software projects. If all algorithms work on the same data repre-

sentation, the algorithms are better comparable. Another benefit is that different libraries, working

on harmonized data-types, are easier to integrate to each other, as no data conversions have to be

performed.

This work identifies common algorithms for the different processing stages.Depth percep-

tion algorithms are not refactored within this work, as these algorithms depend on the underlying

hardware technology. Several common algorithms exist in the filtering stage: normal estimation,

noise reduction and Octree filtering. The latter one is of most importance, as it also serves as a

method to partition the space, which is required by some meshing algorithms. Thus it is further

investigated in this work. Theregistrationstage is dominated by the ICP algorithm. Therefore,

the ICP will be refactored in this work and decomposed into sub-algorithms. Thesegmentation

stage is left for future work, as this step is regarded as optionally in a surface reconstruction task

for mobile manipulation tasks. Many mesh generation algorithms rely on Delaunay triangulation

and this is why is regarded as atomic algorithm.Visualizationfunctionality does not need to be

refactored because standardized interfaces already exist.

A general algorithm that does not fall in one of the above categories, is thek-Nearest Neigh-

bors search algorithm. It is used byfiltering, registration, segmentationand mesh generation

algorithms. Thek-Nearest Neighbors search is an atomic algorithmic component.

The remainder of this Chapter will present the common data-types and algorithms in further

detail.

4.3 Harmonization of common data-types

The 3D perception and modeling domain with bias toward mobile manipulation applications

has three major data-types:

• TheCartesian point, as a representation of a surface sample or a distinct feature in the three

dimensional space.

• Cartesian point cloud, as collection of Cartesian points. This representation isoften used in

3D perception and modeling approaches, as it is a natural wayto represent aggregated laser

range data.

38

Chapter 4. CONCEPT

• Triangle mesh, as an approximation of a surface. Most polygonal mesh generation algo-

rithms create triangle meshes [117], especially as many use the Delaunay triangulation. Tri-

angle meshes are also one of the most common representationsfor collision checkers [113].

And even for mesh compression methods, triangle meshes are the predominant data-type

[118].

The following section will investigate each of these data-types.

4.3.1 Cartesian point representation

A minimalistic implementation of a Cartesian point for three dimensions at least has a

representation of thex, y andz coordinates. The investigated libraries are those that primarily

work with points. In this case the libraries withregistrationcapabilities and KDL in the role of a

potential user library.

Representation in existing libraries

• 6DSLAM : The point representation in the 6DSLAM library is reduced to the very basic

functionality. Its main purpose is to work with the ICP algorithm. The primitive used

data-type for thex, y andz coordinates isdouble (cf. FigureA.1). The point class has func-

tionality for input and output streaming and allows to applya homogeneous transformation

to modify the position of a point.

• MRPT : MRPT uses an inheritance hierarchy (cf. FigureA.2) to represent points. This hier-

archy intermixes points and poses as the generalization of both is a class named

CPoseOrPoint. The coordinates are encoded with the primitive typedouble. The class

provides basic vector functionality. Beside this class, there is also alight weightversion of

a point, calledTPoint3D. Probably to have a more convenient version, as it serves as input

in the constructor or a more efficient way store the information.

• IVT : In the IVT points are treated as a vector with three elements(cf. FigureA.3). The

coordinate data-type is represented asfloat and is aggregated in a struct. Basic matrix

operation functionality is decoupled and implemented in a separate class.

• FAIR : In the FAIR library a Cartesian point is implemented in a simple struct with three

double values (cf. FigureA.4). It contains a pointer to a struct with additional information,

like color, intensity, etc. The representation of coordinates is realized withdouble. The

functionality vector algebra is encoded in the point cloud container (cf. FigureA.12). The

usage of the point struct is optimized towards the ICP algorithm.

• ROS: In ROS data-types are typically defined in message files (.msgfile extension). These

message definitions are translated while compilation into source code, header files respec-

tively. ThePoint32.msgdefines a Cartesian point:

39

Chapter 4. CONCEPT

� �

Th is c o n t a i n s t h e p o s i t i o n o f a p o i n t i n f r e e space (w i th 32 bi t s

o f p r e c i s i o n) .

I t i s recommeded t o use P o i n t wherever p o s s i b l e i n s t e a d o f

Po in t32 .

#

Th is recommendat ion i s t o promote i n t e r o p e r a b i l i t y .

5 #

Th is message i s des igned t o t a k e up l e s s space when send ing

l o t s o f p o i n t s a t once , as i n t h e case o f a Po in tC loud .

float32 x

10 float32 y

float32 z

� �

Listing 4.1: ROS message definition for a Cartesian point.

The generated code (cf. FigureA.5) results in a representation with threefloat values.

Further functionality comprises streaming in the sense that it can be serialized to be sent

to anothernodeover a network. Though the point message serves as common interface

within ROS, the Cartesian point representation in some packages (e.g. ”Gmapping ”or ”con-

vex decomposition”) might have other internal representations which need to be converted

to or from the message data-type.

• ITK : The ITK uses a C++ template for a Cartesian point (cf. FigureA.6). The parameters,

dimension and the underlying type need to be defined by a user of this data structure. As

ITK is a non-robotic library, but one that provides algorithms forn-dimensional problems,

it does not maintain point representation for different dimensions. Functionality for vector

processing like addition, subtraction and test for equality are provided.

• Meshlab: Similar to ITK, Meshlab uses a C++ template (cf. FigureA.7). But only the

primitive types for thex, y and z coordinates can be defined. The dimension is cannot

be changed within the template. The implementation is dependent on the template-based

header libraryEigen59 for Matrix computations.

• KDL : Although KDL does not directly address the 3D perception and modeling domain,

there might be robotic applications that have to cope with both, kinematic issues and per-

ception tasks. So why should they not be able to use or easily interface with a common

point representation? KDL stores the coordinates in an array of double values (cf. Fig-

ureA.8). Data is accessible via according getter and setter methods. KDL supports frame

transformations and basic vector operations.

59http://eigen.tuxfamily.org/index.php?title=Main_Pag e

40

http://eigen.tuxfamily.org/index.php?title=Main_Page

Chapter 4. CONCEPT

Harmonized representation in BRICS

The harmonized Cartesian point representation in BRICS tries to capture what is common

in the previous discussed point representation. Most libraries use a representation with simple x,

y, and z variables, especially those that use the points as input for the ICP algorithms in a robotic

context. The predominant primitive data-type isdouble, but the harmonized version should have

some flexibility to switch tofloat , as this is less memory intensive and potentially faster on the

same hardware platforms. For example this consideration isof interest for (industry) PCs with

32bit processors, as there is the possibility to switch to afloat representation that better fits to

32bit processors. This design choice in a robot developmentis typically done once for a specific

system, so it is reasonable to configure this during compile time and not dynamically.

Basic matrix operation functionality is commonly used among the investigated libraries, as

the Cartesian point also serves as vector of dimensionalitythree. Thus a harmonized point should

support simple vector algebra as addition, subtraction andmultiplication with a scalar. An impor-

tant feature is to implement multiplication with a matrix, to enable homogeneous transformation,

to rotate and translate a point. Although streaming supportis not regarded as a commonly avail-

able feature, it is convenient to have it. It allows to easilydump the output to relief debugging or

logging activities, and it makes conversions to other pointrepresentations simpler.

A harmonized data-type must preserve flexibility to future extension. A possible extensions

of a point could be color information, (like red, green and blue channels), estimated normals,

weights, probabilities, flags is a point is (in)valid or a feature vector descriptor for distinctive prop-

erties (like SIFT for images), to name some. It is possible toimplement this via class inheritance,

but with growing requirements the inheritance hierarchy would have a combinatorial explosion of

possible combinations. To overcome this problem thedecoratorsoftware pattern will be applied

[9]. This allows to wrap a point with another point skin. The outer appearance is still a point but

the inner representation has additional information. Another advantage of this technique is that

new information can be added dynamically, just by adding another decoration layer.

The representation of the investigated libraries and the resulting requirements for a harmo-

nized representation are summarized in Table4.1. To represent a scene of an environment, single

Cartesian points are often grouped into point clouds to approximate a surface.

41

Chapter 4. CONCEPT

Table 4.1: Comparison table for Cartesian point representation in existing libraries and

requirements for BRICS.

Library Simple

x,y,z repre-

sentation

Primitive

data-type

Used

for

ICP

Supports

matrix

operations

Stream-

ing

support

Additional

information

(e.g. color)

Robotic

library

Notes

6DSLAM ! double ! ! ! - !
MRPT - double ! ! - - ! uses point hierarchy;

point cloud uses

another internal

representation

IVT ! float ! - - - -

FAIR ! double ! -* - ! ! * = matrix

functionality in point

cloud class encoded

ROS ! float ! - ! - ! generated from

messagefile

ITK -* arbitrary* ! ! - - - * = uses C++

templates for type and

dimension

Meshlab - arbitrary* ! - - - - * = use C++ templates

for type; depends on

Eigenlibrary

KDL ! double - ! - - ! Depends onEigen

library

Require-

ments for

BRICS

! double

and float

! ! ! ! ! Decorator pattern for

additional information

4.3.2 Cartesian point cloud representation

The Cartesian point cloud is a set of Cartesian points. Threedimensional point clouds are

already a 3D model of the world, as the points can be seen as samples of the perceived surfaces. A

point cloud representation at least has to store a set of points. The same libraries as in the Cartesion

point 3D harmonization are investigated again, except for the KDL representation, which is not

intended to be used in a point cloud context.

Representation in existing libraries

• 6DSLAM : The point clouds are encapsulated in aScan class (cf. FigureA.9). This al-

ready gives a strong semantic on the underling depth perception technology: a laser range

scanner. TheScan class stores the points in a simple vector of points and has aninterface

for point reduction filtering by a k-d tree. The reduced points are then stored in a separate

double array, to exploit optimized data access in later processing steps. Functionality for

homogeneous transformation and streaming are supported.

• MRPT : As MRPT typically uses point clouds for navigation and SLAMapplications, the

42

Chapter 4. CONCEPT

point clouds are represented asmaps. The mapsare structured in an abstract inheritance

hierarchy, to allow a simple point representation to be exchanged for example with color

annotated points (cf. FigureA.10). An interesting observation is that the Cartesian point

representation, as presented in the preceding section, is not reused. Instead each coordinate

is stored in its own vector offloat values. Similar to the 6DSLAM library, MRPT offers an

interface to a k-d tree construction in the map representation, but in addition an interface for

point registration is available. The result is a point cloudrepresentation that is designed for

robotic navigation tasks, but not for reuse in other contexts. Streaming functionality in the

sense of loading and saving from and to files is supported.

• IVT : The IVT library does not have a dedicated class for point clouds. To represent sets of

points for example in the interface for the ICP algorithm in the classCICP (cf. FigureA.11),

a pointer to an array of points is used. As no information about the size of the data array is

addressed directly, this might lead to access of data that isout of bounds of the array.

• FAIR : In the FAIR library point clouds are stored in a vector of pointers to points that

is embedded in theCCartesianPointCloud class (cf. FigureA.12). Functionality for

homogeneous transformation of point clouds, size reduction and streaming is available in

the point cloud representation.

• ROS: Similar to the point representation (cf. Listing4.2), ROS defines point clouds in

messages. The corresponding messagePointCloud.msgis listed as follows:
� �

Th is message h o l d s a c o l l e c t i o n o f 3d p o i n t s , p l u s o p t i o n a l

a d d i t i o n a l i n f o r m a t i o n abou t each p o i n t .

#Each Po in t32 shou ld be i n t e r p r e t e d as a 3d p o i n t i n t h e frame

g i v e n i n t h e header

Header header

5 geometry_msgs /Point32 [] points # Array o f 3d p o i n t s

ChannelFloat32 [] channels #Each channe l shou ld have t h e same

number o f e l e m e n t s as p o i n t s array , and t h e da ta i n each

channe l shou ld co r respond 1 :1 w i th each p o i n t

� �

Listing 4.2: ROS message definition for a Cartesian point cloud.

The generated source code (cf. FigureA.13) for C++ contains a vector of points. As this

class is a ROSmessageit supports streaming capabilities. Further functionality like frame

transformations is shifted to other classes.

• ITK : ITK has aPointSet class to represent Cartasion point clouds (cf. FigureA.14). As

for the Cartesian point, a C++ template is used to declare type and dimension by the user of

the ITK library. The internal point set representation is encapsulated into a container class.

43

Chapter 4. CONCEPT

Streaming capabilities are supported by thePrintSelf method. A function for nearest

point search is also available.

• Meshlab: Meshlab does not represent point clouds in a dedicated class. As seen in the

interface for registration,PointMatching (cf. FigureA.15), the matching process requires

a vector of points.

Harmonized representation in BRICS

The harmonized Cartesian point cloud will have a vector of points as this is the most com-

mon, among the investigated libraries, and the most convenient way to represent it. Supported

operations should be streaming capabilities, similar to the Cartesian point requirements (cf. Sec-

tion 4.3.1), homogeneous transformation as this just means to forwardthe transformation to each

point in the cloud, and simple manipulation operations for example to add new points.

Functionality for point size reduction will not be a part in the representation as it might

not be needed for all 3D perception and modeling applications. This is moved to the algorithms

of the Filtering stage. Table4.2 summarizes representations in existing libraries and resulting

requirements for the harmonized point cloud. Beside the Cartesian point cloud, triangle meshes

are a common way to model a 3D scene.

Table 4.2: Comparison table for Cartesian point cloud representation in existing libraries

and requirements for BRICS.

Library Dedicated

class for

point cloud

Representation Supports

transfor-

mations

Stream-

ing

support

Point

reduction

Robotic

library

Notes

6DSLAM ! Vector of points ! ! ! ! point cloud is seen

as ascan

MRPT ! 3 vectors of

floats (one for

each

coordinate)

- ! ! ! point cloud is part

of maphierarchy;

supports color

information

IVT - array of points - - - -

FAIR ! vector of

pointers to

points

! ! ! !
ROS ! vector of points - ! - ! generated from

messagefile

ITK ! container class - - - -

Meshlab - vector of points - - - -

Require-

ments

for

BRICS

! vector of points ! ! - !
44

Chapter 4. CONCEPT

4.3.3 Triangle mesh representation

Typically the triangle and triangle mesh representations are strongly related in the sense

that some libraries use anexplicit triangle representation and others animplicit representation.

Explicit means that a triangle is represented by a dedicated class. A triangle mesh is then a set of

triangle objects. Often the triangles classes are composedof the three vertices - the edges between

the vertices represent the triangle. Theimplicit representation does not have a special class for

a triangle. It uses a list of points and a list of indices that refer to the points. Three consecutive

values in the indices list describe indices of three points in the corresponding point list. Thus

treating triangles and triangle meshes separately, as it isdone for the Cartesian point and Cartesian

point cloud, is not straight forward. The following sectionwill primarily investigate libraries that

support mesh generation, mesh visualization or are potential usersof a triangle mesh, like motion

planing libraries for mobile manipulation.

Representation in existing libraries

• VTK : The VTK library offers two container classes for mesh representations:vtkPolyData

andvtkUnstructuredGrid. Both can be used for sets of polygons, lines or points. A

triangle set is composed of dedicated objects for triangles(cf. FigureA.16). The internal

representation of a triangle is encoded with a set of line segments, rather then three triangle

vertices. Streaming functionality is supported, but homogeneous transformations are not

included in the mesh interfaces.

• Meshlab: Meshlab supports many 3D model representations like for example point sets,

edge mesh, triangle mesh or tetrahedral meshes. Meshlab hasboth representations:implicit

andexplicit. For the implicit variant (cf. FigureA.18) the user has to self-define the vertex

and face type. An according source code would look like the following statement, with

MyVertex andMyFace as user-defined classes:

class MyMesh: public TriMesh< vector<MyVertex>, vector<MyFace> >;

With the user-defined type for the vertices, Meshlab supports compile-time flexibility to

enhance a vertex by color, normals etc. The explicit representation of a triangle uses an

array with three vertices (cf. FigureA.17). The vertices are C++ templates, so the user can

define the primitive type of the coordinates.

As both the implicit and the explicit way to represent triangle meshes have a common access

method it is possible to exchange the underlying representation. At least some algorithms

can work with both representations.

• CGAL : The CGAL library makes excessively use of C++ templates. CGAL uses a container

type to encapsulate meshes, where each triangle is regardedas afacet. Facets consist ofhalf-

edges. The conversion between different representations, as well as streaming capabilities,

are available.

45

Chapter 4. CONCEPT

• Gmsh: Similar to Meshlab, Gmsh supports many 3D shapes, approximated with lines, trian-

gles, quadrangles, tetrahedra, prisms, hexahedra and pyramids. To describe a triangle mesh,

Gmsh uses anexplicit representation. The meshMmodel consists of a set ofMTriangle

objects (cf. FigureA.19). A single triangle has an array of pointers to the vertices.Gmsh

has extdended versions of a triangle, realized via inheritance. The triangle interface provides

getter and conversion methods for faces or various other representation. It also collaborates

with other libraries like VTK.

• Qhull : Qhull implements implicit triangle meshes in a double linked list of structs (cf.

FigureA.20). Each vertex is considered an array of coordinates with dimension three. As

Qhull does not use classes at all60 it cannot provide functionality for conversion to other

representations or steaming within the data-type representation.

• CoPP/BRICS MM : The triangle mesh representation in CoPP and BRICSMM are the

same. The triangle is explicitly modeled with three variables of a three-dimensional vector

type: Vector3 p1, Vector3 p2 andVector3 p3 (cf. FigureA.21). This representation

has facilities for normal computation, centroid computation, normal computation area com-

putation and streaming.

• openrave: openrave has both: theexplicit and implicit variant. The explicitTRIANGLE

class consists of three vectors, each representing a vertex(cf. FigureA.22). An interesting

observation is that openrave does not seem to use theTRIANGLE class in a mesh. In fact all

meshes are represented with theimplicit representation in theTRIMESH (cf. FigureA.23).

Here a vector of vertices and a vector of corresponding vertices is used. The triangle mesh

has streaming support but no conversion to other 3D models are available, as no other 3D

models are used for the mobile manipulation motion planners.

• OSG: The OSG library encodes a triangle mesh in theTriangleMesh class, which is a

specialization of aShape super class (cf. FigureA.24). The mesh uses aVec3Array for

vector vertices, while each vertex is a three dimensionalfloat array. To form the trian-

gles, an index listIndexArray for the corresponding triangle indices is used. This triangle

mesh class does not support transformation to other 3D models, nor does it support stream-

ing directly. Typically aTriangleMesh is hooked into aGeode(cf. Section3.3) and is

forwarded to the OpenGL layer to be rendered.

• ROS: ROS has ageometricshapespackage in themotion planning commonstack. This

package considers aMesh as a specialization of a shape (cf. FigureA.25). The triangle

mesh is represented in animplicit manner. An array ofdouble values store the vertices.

Each consecutive three values form a vertex. Similar to this, each three consecutiveint

60Qhull was started in the mid 1990s as a C project that means before C++ was even standardized in 1998.

46

Chapter 4. CONCEPT

values form a triangle in the array for the indices. Conversion to other 3D models and

streaming support are not included in the triangle mesh class.

Harmonized representation in BRICS

Reviewing the previously analyzed libraries, there are twocommon ways to represent a

triangle mesh: First, theimplicit representation with a vector of vertices and a vector of indices.

Three consecutive indices, referencing the vertices vector, form a triangle. The advantage is the

memory efficient storage, as vertices do not need to be inserted multiple times into the mesh if

one vertex belongs to several triangles. The disadvantage is that both vectors have to be carefully

maintained while adding or removing triangles. Furthermore it is not flexible for future exten-

sion, because a triangle might have additional informationlike normals, color, a validity flag, a

probability or a texture reference.

The explicit version has a vector of triangles, whereas each triangle consists of three ver-

tices. The representation is more flexible in the sense that abasic triangle class can be extended or

decoratedin future developments, similar to the Cartesian point. Buton the other hand it might

be less memory efficient.

As an interesting observation, Meshlab already supports both types of representation. In-

spired by this, a harmonized triangle mesh should support both representations. An abstract class

allows access with a common interface, so a potential user can choose which implementation fits

most to an application or a problem. However that does not necessarily means both representations

are always fully exchangeable.

A common functionality is the streaming support which allows to easily read and write data

to standard output, files or other implementations of triangle meshes. A support of transformation

to other representations of 3D models (e.g. splines) is not feasible, because first, the triangle mesh

is already the predominant representation, and second, only few libraries support this feature. As

an additional feature a harmonized triangle mesh should support homogeneous coordinates trans-

formations similar to the Cartesian point clouds. The motivation for this is that a potential user

might create a mesh first, or the used depth perception devicealready delivers a mesh, and then

register it into a global frame with an appropriate algorithm.

Table4.3 recapitulates the common representations and capabilities, and the resulting re-

quirements for a harmonized triangle mesh data-type.

Note that the concept for a triangle mesh can be easily applied to a tetrahedralcomplex.

This data-type might occur as an intermediate step to produce a surface mesh (for example in

Dalaunay triangulation based mesh generation approaches). The implicit variant uses a vector of

47

Chapter 4. CONCEPT

vertices and a vector of indices. Each consecutive four points correspond to the four vertices of

one tetrahedron.

Theexplicit variant is a vector of tetrahedrons. A single tetrahedron consists of three trian-

gles. The triangle class is the same for the tetrahedron and theexplicit triangle mesh.

Table 4.3: Comparison table for triangle mesh representation in existing libraries and re-

quirements for BRICS.

Library Explicit or

implicit

triangle

representa-

tion

Triangle mesh

representation

Explicit triangle

representation (if

present)

Stream-

ing

support

Transfor-

mation to

other repre-

sentations

Robotic

library

Notes

VTK explicit array of triangles set of lines ! - -

Meshlab both vector of vertices

and facets or vector

of triangles

array of 3 vertices - - - user defined

data-types;

both represen-

tations can be

used

CGAL explicit container class that

holds facets

- ! ! - heavily

templated

gmesh explicit vector of triangles array of 3 pointers

to vertices

! ! -

Qhull implicit double linked list of

structs for vertices

and indices

- - - -

CoPP &

BRICS MM

explicit vector of triangles 3 vertices ! - !
openrave both vector of vertices

and indices

3 vertices ! - ! triangle

representation

unused

OSG implicit vector of vertices

and indices

- - - -

ROS implicit array of vertices

and indices

- - - !
Require-

ments for

BRICS

both vector of vertices

and facets or vector

of triangles

array of 3 vertices ! - !
4.4 Refactoring and harmonization of common algorithms

In this section common atomic algorithmic components are presented. They are described

with UML software component diagrams. As the harmonized andrefactored algorithms will be

implemented with the C++ programing language, the component interfaces will presented in C++.

For 3D perception and modeling at least the following atomiccomponents can be identified:

• Octree algorithm

48

Chapter 4. CONCEPT

• Iterative Closes Point algorithm

• k-Nearest Neighbors search algorithm

• Delaunay triangulation

This list does claim to be complete, but these are the most obvious and common elements as

deduced from theExplorationphase (cf. Section3.2). The remainder of this section investigates

each of the components and discusses the interfaces.

4.4.1 The Octree component

The Octree algorithm is the de-facto standard to reduce point clouds and it is used for voxel

representation or for surface mesh generation approaches.The Octree can be regarded as a com-

mon atomic element for 3D perception and modeling applications.

The Octree component has two different roles: first asreduction filterand second as struc-

turedpartition of the space into cubes. To account for both roles, two separated provided interfaces

are offered for each functionality. The first functional interface is the

IOctreeReductionFilter. It provides capabilities to reduce point clouds. The provided

method virtual void reducePointCloud(PointCloud3D∗ originalPointCloud,

PointCloud3D∗ resultPointCloud)= 0; needs a point cloud as input and creates a new point

cloud with the reduced size. The other functional interfaceIOctreePartition provides func-

tionality to partition a point cloud in a set of smaller pointclouds. The functionvirtual void

partitionPointCloud(PointCloud3D∗ pointCloud, std::vector<PointCloud3D>∗

pointCloudCells)= 0; accepts a point cloud as input parameter and creates a new vector of

point clouds that represents the cells with the points.

To decouple the configurable parameters, a third provided interface is offered. The param-

eter that needs to be defined is thevoxel size. Therefore the interfaceIOctreeSetup has a getter

and a setter method to manipulate the parametervoxelSize. The Octree component does not

depend on an other modules and thus has no required interfaces. Figure4.1 shows the according

component diagram.

<<component>>

Octree

IOctreeReductionFilter

IOctreePartition

IOctreeSetup

Figure 4.1: UML component diagram of the Octree algorithm.

49

Chapter 4. CONCEPT

4.4.2 The Iterative Closest Point component

The most common way the to register multiple point clouds into one common coordinate

frame, is to use the Iterative Closest Point (ICP) algorithm.

Reviewing Algorithm2.1, the ICP has two major sub-elements: a step that establishespoint

correspondences and a step that can estimate rigid transformations. Both steps can be solved

by various approaches. To be able to exchange atomic parts, both steps will be encapsulated as

subcomponents. These subcomponents will be addressed by the required interfaces of the ICP

component:IPointCorrespondence andIRigidTransformationEstimation.

This ICP component offers the simple matching functionality in the provided interface:

IIterativeClosestPoint. This minimal interface needs to accept two point clouds:model

anddata, and calculates the translation and rotation that needs to be applied to the data so that

it is aligned to the model. The rotation and translation can be summarized in a homogeneous

transformation matrix, and is accessible with theresultTransformation output parameter:

virtual void match(PointCloud3D∗ model, PointCloud3D∗ data, IHomogeneousMatrix44

∗ resultTransformation)= 0;. Details of the homogeneous transformation of point and point

cloudsIHomogeneousMatrix44, can be found in Section5.3.1.

Beside the above explained simple interface, a second interface

IIterativeClosestPointDetailed is offered that reveals more internal details to the user

of this component. A potential user of this component might what to define new termination

criteria or a system scheduler has the responsibility to invoke this component iteratively ac-

cording to a scheduling policy. The interface has getter andsetter methods for thedata and

themodelpoint cloud and a methodvirtual double performNextIteration()= 0; that invokes

only one iteration of the ICP and returns the error accordingto Equation2.2. Functions like

getLastEstimatedTransformation and getAccumulatedTransfomation allow to get

intermediate and accumulated results of the transformation. This is astatefulinterface that means

the results rely on previous states for example invocationsof setData, setModel or

performNextIteration. This implies acontracton the interface: to correctly use this interface

first setdataandmodel, then invokeperformNextIteration, as often as desired.

Note that theIIterativeClosestPoint is astatelessinterface, and the behavior is al-

ways the same (even if multiple threads invoke the matching functionality), while the behavior of

IIterativeClosestPointDetailed depends on the history of preceding events [12]. Both

interface types are clearly separated.

The interface that fulfills theconfigurationrole is theIIterativeClosestPointSetup.

It allows to set and get the convergence threshold, the maximum number of iterations and it allows

to configure the required subcomponents. The subcomponentsare further describes in the follow-

50

Chapter 4. CONCEPT

ing sections. All interfaces for the ICP components are alsodepicted in an UML class diagram,

see FigureA.31. Figure4.2presents the component diagram for the ICP.

<<component>>

Iterative Closest Point

IIterativeClosestPointSetup

IPointCorrespondence

IRigidTransformationEstimation

IIterativeClosestPoint

IIterativeClosestPointDetailed

Figure 4.2: UML component diagram of the Iterative Closest Point algorithm.

The Point Correspondence subcomponent

The component for establishing the point-to-point correspondences, needs two point clouds

as input data. And returns a list of corresponding points. Torepresent the corresponding points a

new class is in introduced:CorrespondencePoint3DPair. It essentially consists of two Carte-

sian points that model the correspondence.

The provided interfaceIPointCorrespondence has just one method that allows to calcu-

late the point-to-point correspondencevirtual void createNearestNeighborCorrespondence

(PointCloud3D∗ pointCloud1, PointCloud3D∗ pointCloud2,std::vector<

CorrespondencePoint3DPair>∗ resultPointPairs)= 0;. The component does not need

to be configured, as it has no parameters, nor it needs a required interface. As internal realization

thek-Nearest Neighbor search component, which will be presented later, could be used, but this is

completely left to the implementation. Figure4.3shows the according UML component diagram.

<<component>>

Point Correspondence
IPointCorrespondence

Figure 4.3: UML component diagram of the Point Correspondence component.

The Rigid Transformation Estimation subcomponent.

The second required interface for the ICP algorithm, is the Rigid Transformation Estimation

component. It provides one interface:IRigidTransformationEstimation. This interface

has a list of point correspondences as input and a homogeneous transformation as output param-

eter, to store the resulting transformation. The return value is the resulting error according to Equa-

tion 2.2: virtual double estimateTransformation(vector<CorrespondencePoint3DPair

>∗ pointPairs, IHomogeneousMatrix44∗ resultTransformation)= 0;

51

Chapter 4. CONCEPT

The component has no required interfaces, nor it has parameters that need to be configured.

Figure4.4shows the component diagram.

<<component>>

Rigid Transformation Estimation

IRigidTransformationEstimation

Figure 4.4: UML component diagram of the Rigid Transformation Estimation component.

4.4.3 Thek-Nearest Neighbor search component

Thek-Nearest Neighbor search component is a general algorithm to compute thek nearest

neighbors to a point (or a vector of values in general). Nearest Neighbor search operations are for

example used byregistration or normal estimation filteringalgorithms, thus it can be seen as a

common atomic element for 3D perception and modeling.

The component will account for two different roles, the firstis a general user that might

want to use the component in a completely other context than robotics, and the second users uses

Cartesian points with dimension three. The more general interface is calledINearestNeighbor

and allows to set a multidimensional vectordata. findNearestNeigbor uses a vector as query,

as well ask, and it will return a vector of indices to thek nearest neighbors (cf. FigureA.34).

The interfaceINearestPoint3DNeighbor is specific to the 3D perception and model-

ing domain, as it uses Cartesian points. Instead of a multidimensional data vector, the data is

defined by a point cloud. The query is aPoint3D, rather than a vector:virtual vector<int>

findNearestNeigbor(Point3D∗ query, int k=1)= 0;The default value fork, for this interface

and the above one, is1.

Both interfaces arestateful, as most implementations first crate an appropriate search struc-

ture, like for example a search tree. Search queries are thenaccelerated by using that structure.

Whenever in thek-Nearest Neighbor interfaces thedata is set, these search structures are created.

As a consequence the user has to follow thecontract that first thedata is set and afterwards the

queries are invoked. In addition to that, the component implementation has to check erroneous

input like search queries that have a mismatching dimensionwith thedata.

The configuration interfaceINearestNeighborSetup allows to get thedimension and

to set and get an optional parameter for the maximal allowed distance, to regard an element as

neighbor. This component has no required interfaces and is presented as UML component diagram

in Figure4.5.

52

Chapter 4. CONCEPT

<<component>>

Nearest Neighbor

INearestNeighborSetup

INearestNeighbor

INearestPoint3DNeighbor

Figure 4.5: UML component diagram for the k-Nearest Neighbor search component

4.4.4 The Delaunay Triangulation component

The Delaunay Triangulation algorithm is commonly used as atomic element among the

mesh generation algorithms, like for example the algorithms of theCRUSTandCOCONEfamily

or theα-shapes method, depend on this triangulation (cf. Section3.2).

The primary role of the Delaunay Triangulation component isto create a triangulation from

a point cloud. The result of a 3D triangulation is a set of tetrahedrons, which is accessible as output

parameter: virtual void triangulate(PointCloud3D∗ pointCloud, ITetrahedronSet∗

tetrahedrons)= 0; The representation of a tetrahedron set is discussed in Section 4.3.3. Be-

side the 3D triangulation an application might only need 2D triangulations embedded into a 3D

space. That means one axis is ignored and the elevation to this axis is flattened. This could be the

case if the triangulation is directly applied to a depth image, whereas the depth axis is ignored.

In this case the 2D triangulation would be faster, because the problem space is reduced by one

dimension. The following method offers this capabilities.Input is a point cloud and a triangle

mesh is the output parameter. The parameterignore allows to specify, which axis should be

ignored: virtual void triangulate(PointCloud3D∗ pointCloud, ITriangleMesh∗ mesh,

axis ignore = z)= 0;

All triangulations obey theDelaunay property(cf. Section2.3.5), and do not need any

further parameters. That is why there is no configuration interface for this component. It also

has no required interfaces. Figure4.6 illustrates the UML component diagram fro the Delaunay

Triangulation.

<<component>>

Delaunay Triangulation
IDelaunayTriangulation

Figure 4.6: UML component diagram for the Delaunay Triangulation component

53

Chapter 5

IMPLEMENTATION

This section presents details of theRefactoring(cf. Section4.1.3) and Integration (cf. Section

4.1.4) phases. Implementation of the requirements for harmonized data-types are explained, then

the realization of the components for common algorithms arepresented. The software is integrated

into theBRICS3D library. Note that the development of the BRICS3D library continues beyond

the scope of this master thesis.

5.1 Choice of programming language and tools

The implementation is done in theC++ programming language. It is a multi-paradigm

language that supports object-oriented programming, but it does not enforce it. This is by far the

predominant language in the field of robotics, computational geometry and 3D perception and

modeling in large. Most libraries in these domains are already written in C++ or C. See also

Section3.3.

The development is accompanied by a couple of tools. AsIntegrated Development Envi-

ronment (IDE)the Eclipse (Galileo)platform is used, in combination with theCDT plug-in for

C andC++ developments. The source code is documented withDoxygen, to automatically gen-

erate manual pages. TheEcloxplug-in for Eclipse helps to create Doxygen conform source code

comments. To foster operating system independence, the BRICS 3D library is compiled with the

CMakebuild system. A plug-in calledcmake editorfor Eclipse enables syntax-highlighting and

code-completion capabilities for the CMake configuration files. Further tools are theSubversion

(SVN)code revision system in combination with a Subversion plug-in for Eclipse that directly

allows to update and commit source code.

For profiling, in terms of how many time has been spend in whichfunction, theOProfile

is used. To check memory consumption and memory leaks theValgrind suite is utilized. Both

tools have a good integration into the Eclipse platform withtheLinux Toolsplug-in. As unit test-

ing framework theCppUnit library is incorporated. Success and failure of single unittests can

be visualized with theECUT plug-in for Eclipse. The benefit of unit tests is tremendous during

the refactoring phases. To name an example, thedecorator patternfor the Cartesian points was

applied after an initial and simple version of the point representation. As the point data-type is

used by nearly all other algorithms it is crucial to be able tocheck if the desired behavior does not

changes, while refactoring the code.

54

Chapter 5. IMPLEMENTATION

Bouml is a powerful tool to create UML diagrams. Among others, it supports class and

component diagrams. It has the ability to generate source code skeletons for C/C++. It even has

capabilities to reverse engineer source code. That means UML class diagrams are generated from

existing code. Manual adjustments still have to be done, because Bouml has problems with C/C++

macro expansions or some dependencies are not resolved whenC++ templates are used. All UML

diagrams presented in this work, are created with Bouml.

A note on the development process: the development roughly follows agile software de-

velopment principles [119], with tools that allow test-driven development, a code revision system

that encourages modification of existing code, collective code owner-ship in the SVN source code

repository, coding conventions and appropriate documentation in the source code. A continuous

integrations system that automatically compiles the software on different operating systems with

different compilers, is planned for the near future.

5.2 Implementation Overview

The implementation aims towards anexample chainof processing stages that can produce

a triangle mesh from a point cloud. As backbone for 3D perception and modeling applications,

the harmonized data-types Cartesian point, Cartesion point cloud and the triangle mesh are imple-

mented. Thedepth perceptionstage ins realized by functionality to load data sets, whichare stored

in depth images, simple text files or a file format that is used by IPA’s Care-O-bot61 platform. The

Octree for thefiltering stage,k-Nearest Neighbor search, the ICP algorithm asregistrationmethod

and a 2D Delaunay triangulation formesh generationare implemented. Point clouds and triangle

meshes can bevisualized. Segmentation algorithms are not implemented. The red border in Figure

5.1contains which parts are realized, with respect to the processing stages.

61http://www.care-o-bot-research.org/

55

http://www.care-o-bot-research.org/

Chapter 5. IMPLEMENTATION

Figure 5.1: Overview of implemented data-types and algorithms

5.3 Common data-types

5.3.1 Cartesian point representation

The Cartesian point representation is implemented in the classPoint3D (cf. FigureA.26).

As proposed in Section4.3.1the point representation has a simplex, y, z representation. To satisfy

the requirements, to be able to choose the data-type at compile time, the Coordinate data-type can

be changed by adjusting a typedef for the coordinate type:typedef double Coordinate;

The coordinate values can be easily accessed and with the steaming operatoroperator<<

andoperator>>. Printing a pint to the standard output is convenient, as it means just invoking:

std::cout << examplePoint;.

The basic matrix functionality is implemented with operators. The operatorsoperator+ and

operator− allow to add and subtract two points, while theoperator∗ enables multiplication with a

scalar value. The homogeneous transformation is an important function for the Cartesian point rep-

resentation and is implemented in the following function:

virtual void homogeneousTransformation(IHomogeneousMatrix44 ∗transformation);

TheIHomogeneousMatrix44 class (cf. FigureA.27) is an abstract interface to a homo-

geneous transformation matrix. This abstract class has essentially one functiongetRawData that

returns a pointer to a data array that stores the values of thetransformation matrix. This array

stores the values in column-row order62 and has a fixed of size16. This is the most general and

62The first four entries in the array belong to the first matrix column, the next four elements to the second column,
and so on.

56

Chapter 5. IMPLEMENTATION

simplest form to represent a matrix. The interface also has functions to multiply matrices with

each other, to print the values with the streaming operatoroperator<< or assign new values with

theoperator= function.

The interface is implemented in theHomogeneousMatrix44 class (cf. FigureA.27). It

uses theEigenlibrary to implement matrix multiplications and convenient set-up in the class con-

structor. The transformation function inPoint3D depends only on the abstract interface, rather

on the implementation of the homogeneous matrix. This conforms to theDependency Inversion

Principle [119]. The goal is that no harmonized data-type relies on any external library.

A point might have additional information like color or a normal vector. To allow good

extendability, thedecorator pattern[9] is applied. ThePoint3DDecorator has the same inter-

face as thePoint3D as it inherits from it. Additionally it holds a reference to an instance of a

Point3D. Whenever a function of the decorator is invoked it is internally forwarded to this point

reference.

An example realization of a point extension, is theColoredPoint3D class that adds new

variables for the additional color information. It inherits form thePoint3DDecorator, thus it

can wraps a point into a layer or skin that appears to the outerworld as a regularPoint3D, but

internally it has additional information that is acessiblewith theColoredPoint3D interface.

It is possible to perform multiple decorations on a point. Inthis case, it can be seen as some

kind of onion that has different layers - each adds a new portion of information. Queries to the

outer layerPoint3D are forwarded to the core in cascaded way.

5.3.2 Cartesian point cloud representation

The point cloud is a collection of Cartesian points. As concluded in the requirements for a

harmonized point cloud representation (cf. Section4.3.2), it consist of a vector of points:std::

vector<Point3D>∗ pointCloud;. The reference to the vector can be accessed via

getPointCloud. The vector can contain either normal points of typePoint3D or decorated

points. Actually for the point cloud there is no difference.

The point cloud classPointCloud3D (cf. FigureA.28) implements abilities to apply a ho-

mogeneous transformation to all points. ThehomogeneousTransformation method forwards

theIHomogeneousMatrix44 to every point in the vector. A similar behavior have the streaming

methodsoperator<< andoperator>>, as data is forwarded from or to the points.

The point cloud offers simple capabilities to make the data persistent, as it is able to load

and store from text files. Furthermore data can be saved to the.ply format that is supported by

many 3D modeling and visualization tools. Figure5.2demonstrates some example point clouds.

57

Chapter 5. IMPLEMENTATION

(a) (b) (c)

Figure 5.2: Examples of point clouds. (a) shows theStanford bunny as point cloud (b) shows
a Pringles can. The left point cloud has the decorated color points and the right cloud has no
decoration. (c) depicts the same point cloud, but slightly rotated.

5.3.3 Triangle mesh representation

Triangle meshes are often represented in animplicit or anexplicit manner. As explained in

Section4.3.3, the harmonized representations should support both versions, to grand flexibility.

TheTriangleMeshImplicit class (cf. FigureA.29) implements theimplicit version. It

has a vectorvertices that holds the points of typePoint3D. In combination with theindices

vector triangles can be represented. Theexplicit mesh representationTriangleMeshExplicit

has a vector of triangles (cf. FigureA.29). Each triangle is modeled by the classTriangle. It has

an array of dimension3 to store the vertices belonging to a triangle (cf. Figure2.2). Both mesh

implementations allow access to their individual vectors via getter and setter methods.

To make both variants exchangeable, they share the same interfaceITriangleMesh (cf.

FigureA.29). It gives a common access to a the vertices of a triangle via:virtual Point3D∗

getTriangleVertex(int triangleIndex, int vertexIndex)= 0;. Triangles can be added and

removed withaddTriangle andremoveTriangle. The adequate maintenance of the under-

ling structures has to be handled different by both mesh implementations. The interface offers

functionality to apply homogeneous transformation matrices. To transform a mesh, the matrix is

propagated to the storedPoint3D objects.

Streaming capabilities are available by theoperator<< andoperator>> methods, similar to

a point cloud. A subtle issue arises with the usage of such operators in an abstract interface, within

C++. The operators need to have the modifierfriend to be used easily. Otherwise a stream could

only be send from one triangle mesh to another triangle mesh.It would not be possible to stream

to a file or the standard output. Unfortunately an abstract function cannot have the modifierfriend .

To resolve the dilemma, the non-abstract steaming operators forward the steams to the abstract

58

Chapter 5. IMPLEMENTATION

read andwrite functions. An illustration of an example triangle mesh can be seen in Figure5.3.

Figure 5.3: Example of a triangle mesh. The image shows theStanford bunny with a triangle

mesh of its surface.

5.4 Common algorithms

5.4.1 The Octree component

The Octree component is realized in a single classOctree (cf. FigureA.30). It implements

all the provided interfaces. The functionality to create anOctrees is taken from the 6DSLAM li-

brary (cf. Section3.3). TheOctree class can be seen as a wrapper to the 6DSLAM library.

The Figure5.4gives an example of the Octree reduction filterIOctreeReductionFilter,

which is applied to the Stanford bunny data set. The unfiltered version, as already depicted in Fig-

ure 5.2(a)has40256 points is the point cloud. The Octree algorithm with avoxel sizeof 0.002

reduces this point cloud to5048. A voxel sizeof 0.004 creates1444 points and avoxel sizeof

0.005 further increases the size to418.

59

Chapter 5. IMPLEMENTATION

(a) (b) (c)

Figure 5.4: Example of Octree reduction. (a) shows theStanford bunny as reduced point

cloud with voxel size = 0.002. (b) shows the data with avoxel size = 0.004. (c) presents further

reduction with voxel size = 0.005.

5.4.2 The Iterative Closest Point component

TheIterativeClosestPoint (cf. A.31) class serves as a generic implementation of the

Iterative Closest Point algorithm. It follows thestrategysoftware design pattern [9], with the slight

modification that context and strategy are implemented in the same class.

IterativeClosestPoint holds two referencesassigner andestimator to the abstract in-

terfaces of the subcomponents IPointCorrespondence and

IRigidTransformationEstimation. The references are trigged during the iteration of the

algorithm (cf. Algorithm 2.1). The concrete instances are defined beyond the scope of the

IterativeClosestPoint class and are configurable through the

IIterativeClosestPointSetup interface. That means that the actual point correspondence

and the rigid transformation estimation algorithms are exchangeable during runtime.

C++ has no possibility to encode a required component interface. Though the fact that

concrete implementations for the above mentioned the sub-algorithms are needed, shall reflect the

required interfaces of ICP component here. This component also has to take into account that the

IIterativeClosestPointDetailed is a stateful interface, while the other one isstateless.

The statful interface stores the intermediate steps in member variables for themodel anddata

point clouds, and the transformation matrices. Thestatelessinterface uses its own version of the

model anddata variables and thus hides their member pendants. This prevents data corruption

if both interfaces are called in an intermixed manner.

The Point Correspondence component

The Point Correspondence component creates point-to-point correspondences between two

point clouds, by computing the Nearest Neighbor from each point from the first point cloud to

the points of the second point cloud. Two implementations ofthis component are available (cf.

60

Chapter 5. IMPLEMENTATION

FigureA.32). The first bases on the optimized k-d tree for dimension3. It is implemented in the

6DSLAM library and the classPointCorrespondenceKDTree creates a wrapper to comply the

IPointCorrespondence interface.

The second implementationPointCorrespondenceGenericNNuses the generalk-Nearest

Neighbor component (cf.5.4.3) with dimension =3 and neighborhoodk = 1.

The Rigid Transformation Estimation component

An implementation of the for Rigid Transformation Estimation component only has to sat-

isfy theIRigidTransformationEstimation interface. Five different algorithms to solve the

estimation are available (cf. FigureA.33). They are taken from 6DSLAM library and adapted to

the component interface.

The RigidTransformationEstimationSVD implements the transformation with the

Singular Value Decomposition (SVD)approach,RigidTransformationEstimationQUATuses

thequaternionbased method,RigidTransformationEstimationORTHO exploitsorthogonal

properties in combination with theeigensystem, RigidTransformationEstimationHELIX

implements thehelical motionestimation andRigidTransformationEstimationAPX real-

izes thelinear approximation.

To cope with all possible variants of Point Correspondence and Rigid Transformation Es-

timation, a factory classIterativeClosestPointFactory can assemble the subcomponents

for the ICP component. It accepts a XML configuration file, parses it and creates the according

instances.

Figure5.5 gives an impression of the ICP algorithm. Two different, butoverlapping data

sets, here depicted with green points in Figure5.5(a)and with white points in Figure5.5(b), are

registered into one consistent coordinate frame, as seen inFigure5.5(c).

61

Chapter 5. IMPLEMENTATION

(a) (b) (c)

Figure 5.5: Example of ICP registration. (a) shows the first point data set (b) shows the

second data set and (c) presents the resulting point cloud byapplying the ICP to (a) and (b).

5.4.3 Thek-Nearest Neighbor search component

Thek-Nearest Neighbor search component can use three differentimplementations, as de-

picted in the UML class diagram in FigureA.34.

NearestNeighborANN realizes the search functionality with theANN library. The algo-

rithms in theFLANN library comply to the component interfaces with theNearestNeighborFLANN

class. The third implementationNearestNeighborSTANN uses functionality from theSTANN

library. Further information to the libraries can be found in Section3.3.

The k-d tree implementation, as it is used in the Point Correspondence implementation

can not be reused, as it is to restricted with dimension3 and neighborhoodk = 1. All three

implementations automatically deduce the dimension from the input data. To prevent undefined

behavior of the component, anassert statement checks if a query has the correct dimensionality,

with respect to the data.

5.4.4 The Delaunay triangulation component

The Delaunay Triangulation component is partially implemented with the Delaunay func-

tionality from theOpenSceneGraph (OSG)library, with the calssDelaunayTriangulationOSG

(cf. FigureA.35). OSG only supports 2D tringulations of 3D dimensional points, thus the 2D

triangulate method wraps the OSG function. Beside this, the data-typeITetrahedronSet

is also left for future implementation.

The previously mentioned triangle mesh in Figure5.3, was generated by the implemented

triangulation.

62

Chapter 5. IMPLEMENTATION

5.5 Framework integration

Further source code has been developed to embed the components into the BRICS3D li-

brary. Some classes are presented here.

The classDepthImageLoader can loaddepth images. Afterwards, the depth images can

can be forwarded to theDepthImageToPointCloudTransformation class, to generate point

clouds. The transformation has a threshold to slice the background off, if needed. That means, all

pixels that are further away from the perception device thanthe threshold, are discarded.

TheIpaDatasetLoader can load the fused data sets of range and color images recorded

on a Care-O-bot platform. The result is a point cloud with decorated color points. ThePringles

can, previously seen in Figures5.2(b)and5.2(c)is an example of a successfully loaded data set.

Thevisualizationcapabilities are realized with the OSG library. Point clouds and triangle

meshes can be displayed. In OSG it is benifitial for huge pointclouds, to partition them into

bunches of approximately no more than10, 000 points, perGeode. Otherwise the performance

drops significantly. The partition into multiple bunches accounts for the parallel architecture of

the graphics adapter hardware.

Benchmark is a simple benchmark suite that allows to store benchmarking results in an

automated way. Instead of printing (intermediate) resultsto the standard output, they are sent to

the benchmark object. Each benchmark object needs to be initialized with a name that is used to

create a logfile to store the results. A logfile is stored in a folder named by the current time-stamp

in a YYYY-MM-DD HH-MM-SS fashion, for example ”2010-02-1517-02-22”.

Every new benchmark instance after the first one also stores its logfile in the same time-

stamp folder. This means one time stamp represents one run ofa process, from its creation to

its termination. The intention is to repeat a benchmark by relaunching its process. That allows a

benchmark to be scheduled by the operating system or a shell script.

63

Chapter 6

EXPERIMENTAL EVALUATION

Algorithms of the 3D perception and modeling domain have been refactored and harmonized,

to make them easier to benchmark on a component level. This Chapter presents an initial set

of benchmarks of the atomic components to judge, which algorithms arebest practicefor 3D

perception and modeling. The Chapter will start with a description of the used test-bed, will

discuss the used metrics and will present a number of benchmarks, with focus on the registration

process.

6.1 Evaluation environment

The benchmarks are performed on an off-the-shelf laptop with 2GHz dual core processor,

with 3GB memory and a Nvidia graphics adapter. The operatingsystem is an Ubuntu 9.10 with

Kernel version 2.6.31-20. The source code is compiled with the gcc compiler version 4.4.1. Com-

piler options are set to debug, that means no optimizations are activated. The experiments have

been performed with source code revision554 of the subversion repository.

The benchmarks are conducted with recorded data sets. The used data set is theStanford

Bunny. All benchmarks are performed with the help of theBenchmark class to allow systematic

documentation. All experiments are performed multiple times and results show mean and standard

deviationσ.

6.2 Performance metrics

The set of benchmarks measure different properties of the refactored and harmonized algo-

rithms. The metrics areexecution time, memory consumptionanderror values, if suitable.

• Processing time:This measures the required processing time. It is deduced from the dif-

ference of one time stamp for and one after invocation of an algorithm. The measured unit

is ms. This metric falls into the categorycostsas discussed in Section3.1.

• Memory consumption: The memory consumption is measured with theValgrind profiling

tool. Like execution time, it measures thecostsof an algorithm. Results are presented with

MB as measurement unit.

• Error : The error values that can be measured depend on the algorithm. For example the

Rigid Transformation Estimation returns an error value. This gives hint about thequality

64

Chapter 6. EXPERIMENTAL EVALUATION

of the output of an algorithm. This metric belongs the the categoryutility as presented in

Section3.1.

Depending on the algorithm, further metrics are applied, for example how many iterations

have been performed within the ICP.

6.3 Performance of Cartesian point data-type

The purpose of this benchmark is to measure the influence of the coordinate type in the

Cartesian point representation. Two metrics are applied: first, the processing time while perform-

ing a homogeneous matrix transformation is measured and second, the memory consumption is

measured.

The benchmark is performed as follows: a point cloud is crated with 10, 000 points. Then

the matrix transformation is applied. Iteratively10, 000 points are added and the transformation

matrix is applied again. To ensure repeatability of this experiment the random generator always

has the same initialseedof 0. The whole experiment has been repeated10 times with either the

double or the float representation.

Table6.1 presents the results for the measured quantityprocessing time. The same data is

plotted in Figure6.1. The outcome is that there is no significant difference in theprocessing time,

on the used test-bed.

The memory profiles, crated withValgrind tool are shown in Figure6.2. The float based

representation consumes50457033 Bytes as peak, while thedoublebased representation consumes

88205769 Bytes. The latter one requires roughly two times more memorythan the other one. This

result does not surprise as afloat variable needs with its 32bit representation only half the memory

than the 64bitdouble representation.

If enough memory is present, thedouble representation is favored on the used test-bed, as it

has no processing time drawbacks, but offers a higher precision of results.

65

Chapter 6. EXPERIMENTAL EVALUATION

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

T
im

in
g

[m
s]

Numper of points

Homogeneous transformation timings of double and float coordinates

double representation
float representation

Figure 6.1: Benchmark of influence of coordinate type in Cartesian point representation.

Table 6.1: Benchmark of influence of coordinate type in Cartesian point representation.

Number of

points in

thousand

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

double 8.41 17.92 19.7 26.16 32.77 39.8 46.03 52.48 59.43 66.09 72.1 79 85.08 91.82 98.56

float 6.42 12.35 18.2 24.06 29.96 36.15 41.63 47.64 53.53 60.2

65.62 71.72

77.6 83.21 89.31

σ double 3.86 9.22 0.47 0.56 0.9 1.66 1.08 1.3 1.76 1.53 1.78 1.91 2.05 2.32 2.19

σ float 0.77 1.02 1.67 1.54 2.38 2.96 2.8 3.34 3.63 3.73 4.02 5.26 4.64 5.84 6.25

66

Chapter 6. EXPERIMENTAL EVALUATION

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 2 4 6 8 10 12 14 16 18

H
ea

p
m

em
or

y
co

ns
um

pt
io

n
[M

B
]

Snapshots

Memory consumption profile of double and float coordinates

double
float

Figure 6.2: Memory profiles for coordinate types in Cartesian point representation

6.4 Performance of Point Correspondence

This benchmark measures the performance of the Point Correspondence component. The

bun000.plydata set is used to create a point cloud. It has a size of40256 points. A second point

cloud is created by cloning the fist and and then applying a translation vector(0.1, 0.1, 0.1). The

processing time to compute the point-to-point correspondences is measured. The correspondences

are known: thei-th point of the first cloud belongs to thei-th point in the second cloud. This

allows to deduce if a correspondence is correct. The measured quantity is the number of correct

assigned points divided by the total number of points in a cloud. This shall reflect theutility of the

generated output.

All available implementations for the Point Correspondence component are used. The k-d

tree and the ANN, FLANN and STANN implementation for thek-Nearest Neighbor search com-

ponent are benchmarked. All algorithms use their default values. The maximal distance threshold

hold is the default value of50.

The experiment has been performed10 times and the results are depicted in Figure6.3.

All algorithms achieve the same amount of correct correspondences:100%. The results for the

processing times show differences. ANN and FLANN are the fastest algorithms, closely followed

by the k-d tree. The STANN implementation is significant slower. For this test-bed and for this

data set, ANN and FLANN can be consideredbest practice.

67

Chapter 6. EXPERIMENTAL EVALUATION

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

k-d tree ANN FLANN STANN
 0

 1

 2

T
im

in
g

[m
s]

R
at

io

Algorithm

Timings and amount of correct correspondence for Point Correspondence algorithms

processing time
amount of correct correspondences

Figure 6.3: Benchmark results for the Point Correspondencealgorithms

6.5 Performance of Rigid Transformation Estimation

The purpose of this benchmark is to evaluate the Rigid Transformation Estimation compo-

nent. The set up is similar to the above benchmark. Thebun000.plydata set is used to create two

point clouds with know displacement to each other. The displacement is defined by the translation

vector(1, 1, 1). The measured quantities are the processing time, the resulting root mean square

(RMS) error of the point cloud distances and a metric that measures how similar the estimated and

the inverted known transformation matrices are. Each matrix value is incorporates into an RMS

error value.

The implementations for Rigid Transformation Estimation comprise the Singular Value De-

composition SVD, the quaternion based approach QUAT, the helical motion (HELIX) and the lin-

ear approximation approach APX. The implementation for theorthogonal properties ORTHO was

not used, because of an unsolved failure during execution.

The results, as presented in Figure6.4, reveal that the point cloud distance errors and the

matrix errors are identical. There are differences in the processing time: QUAT, HELIX and APX

are roughly on the same level whereas SVD is slower. In this case, for this data set and on this

test-bed the QUAT, HELIX and APX can be consideredbest practiceas they demonstrate equal

performance.

6.6 Performance of Iterative Closest Point

To benchmark the Iterative Closest Point algorithm, all possible combinations of Point Cor-

respondence and Rigid Transformation Estimation implementations will be compared. As input

data thebun000.plyand thebun045.plyare used. This are exactly the data sets used in Figure5.5.

68

Chapter 6. EXPERIMENTAL EVALUATION

 14

 16

 18

 20

 22

 24

 26

 28

 30

 32

SVD QUAT HELIX APX
 0

 1

 2

 3

 4

T
im

in
g

[m
s]

E
rr

or

Algorithm

Timings and error values for Rigid Transformation Estimation algorithms

processing time
RMS error

matrix error

Figure 6.4: Benchmark results for the Rigid Transformation Estimation algorithms

Three metrics are used in the benchmarks. The precessing time to align the two point clouds

is measured, as well as the needed number of iterations and the resulting RMS error after the final

iteration.

The parameters of the ICP are set as follows: convergence threshold is0.00001, the max-

imal point-to-point distance is50 and the maximal amount of iterations is set to100. Every

matching process was repeated10 times.

The results for the processing time are illustrated in Figure 6.5(a). Independent of the used

rigid transformation estimation algorithms, the ANN point-to-point correspondence implementa-

tion outperforms the other algorithms. The STANN implementation is by far the slowest approach.

This benchmarks also confirms that the point-to-point correspondence problem is the most compu-

tational part of the ICP, as the transformation estimation has only a minor influence on the timing

behavior.

The amount of required iterations is roughly the same for allalgorithms and is approxima-

tively 20 iterations (cf. Figure6.5(b)). The only exception is the FLANN approach that needs in

combination with the QUAT estimation the least iterations (16) but with the HELIX it needs the

most. In combination with the APX algorithm the FLANN does not work deterministically, as the

numbers of required iterations is not constant in the benchmark.

Except for the FLANN approach all point correspondence algorithms produce roughly the

same resulting RMS error (cf. Figure6.5(c)).

For the used test-bed and data set the ANN algorithm for establishing the point-to-point

69

Chapter 6. EXPERIMENTAL EVALUATION

correspondences in combination with SVD or QUAT arebest practicechoices, because it is able

to produce the most precise results with the least required processing time.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

k-d tree ANN FLANN STANN

T
im

in
g

[m
s]

Algorithm

Timings of ICP

processing time with SVD
processing time with QUAT
processing time with HELIX
processing time with APX

(a)

 10

 15

 20

 25

 30

 35

k-d tree ANN FLANN STANN

Ite
ra

tio
ns

Algorithm

Number od iterations of ICP

processing time with SVD
processing time with QUAT
processing time with HELIX
processing time with APX

(b)

 0.00202

 0.00204

 0.00206

 0.00208

 0.0021

 0.00212

 0.00214

 0.00216

 0.00218

k-d tree ANN FLANN STANN

E
rr

or

Algorithm

Resultung RMS error of ICP

processing time with SVD
processing time with QUAT
processing time with HELIX
processing time with APX

(c)

Figure 6.5: Benchmark results for the Iterative Closest Point algorithm

70

Chapter 6. EXPERIMENTAL EVALUATION

To conclude this Chapter, it is possible to deducebest practicealgorithms by benchmarking

the refactored components that encapsulate common, atomicalgorithms. The benchmark results

are only valid for the used test-bed and the used test data. Furthermore, the effects of wrapping

and adopting the implementations are neglected. The message is not that a certain algorithmis

best practice, rather thanit is possibleto get access tobest practicealgorithms.

71

Chapter 7

CONCLUSION

This Chapter summarizes the contributions and results of this work and depicts open issues.

7.1 Summary

This work has applied software engineering aspects, in particular software components, to

refactor existing algorithms into common atomic elements.These elements can be benchmarked

to deduce thebest practicealgorithms for a specific task.

The 3D perception and modeling domain has been structured into the subareas:depth per-

ception, filtering, registration, segmentation, mesh generation andvisualization. The state-of-the-

art has been conducted to identify the predominant data-types and algorithms in these categories.

The Octreealgorithm is an atomic component forfiltering and mesh generation, the Iterative

Closest Point (ICP)algorithm is the predominantregistration method,Delaunay triangulation

is commonly seen in surfacemesh generationapproaches and the generalk-Nearest Neighbors

search algorithm is required by many other algorithms.

Existing libraries have been analyzed to find harmonized data-types that are required by the

above algorithms. Requirements for harmonized data-typesfor the Cartesian point, the Cartesian

point cloud and the triangle mesh representations have beenproposed and implemented.

The identified common algorithms have been encapsulated into software components. Har-

monized interfaces for these components have been proposed. The algorithms are implemented

by refactoring existing source code of public available libraries.

The software components have been embedded into the BRICS3D framework. This frame-

work allows to load, process, and visualize data sets and it enables benchmarking of the algorithms.

An initial set of benchmarks demonstrates systematic benchmarking on the software com-

ponent level of the algorithms. Thus it is possible to deduceabest practicealgorithm for a specific

task.

7.2 Future work

Someopen issuesthat remain for future work, are listed as follows:

• More harmonized components and implementation for 3D perception and modeling. This

work has refactored only some of the algorithms. Thesegmentationstage is not yet ad-

72

Chapter 7. CONCLUSION

dressed. Normal estimation, noise reduction, alternativeregistration methods like NDT or

HSM3D and mesh generation with theα-shapes algorithm are promising candidates for

future implementation, to name some.

• Further work includes creation of new performance metrics for 3D models. The Metro

approach [109] is able to measure how similar different meshes are, and might be used for

such metrics.

• Incorporation of uncertainty in the data sets is not yet addressed.

• Modeling of grasps and contacts of objects has been neglected so far.

• Modeling of articulated objects is a matter for future work.

• Appliance of thescenegraphconcept to robotic world modeling is an open issue. That

means representation of the environment in a hierarchical and structured way.

• Developement of simulated depth perception sensors might be a valuable contribution to

benchmark 3D perception and modeling algorithms. Experiments could be performedin

the loopwith known ground truth.

• The integration of the refactored algorithms into a real robot platform is highly desirable, to

validate the applicability of the algorithms in real world scenarios.

The ability to makebest practicechoices of algorithms for a specific robotic task, in early

stages of a robot development process, hopefully makes thisprocess faster and easier.

73

BIBLIOGRAPHY

[1] BusinessDictionary.com, “best practice definition”,
http://www.businessdictionary.com/definition/best-p ractice.html ,
Accessed: March 09, 2010.

[2] J.C. Harris and J.P. Friedman,Barron’s real estate handbook, Barrons Educational Series
Inc, 2001.

[3] Dictionary.com, “”benchmark” in the american heritagedictionary of the english language,
fourth edition”, http://dictionary.reference.com/browse/benchmark ,
Accessed: January 21, 2010.

[4] Roland Siegwart and Illah R. Nourbakhsh,Introduction to Autonomous Mobile Robots,
Bradford Book, 2004.

[5] Stuart Russel and Peter Norvig,Artificial Intelligence: A Modern Approach, New Jersey:
Pearson Education, Inc, 2nd edition, 2003.

[6] A.A. Alatan, Y. Yemez, U. Gudukbay, X. Zabulis, K. Muller, CE Erdem, C. Weigel,
A. Smolic, and A. METU, “Scene representation technologiesfor 3DTV - a survey”,IEEE
transactions on circuits and systems for video technology, vol. 17, no. 11, pp. 1587–1605,
2007.

[7] B. Siciliano and O. Khatib,Springer handbook of robotics, Springer-Verlag New York Inc,
2008.

[8] T.K. Dey, Curve and surface reconstruction: algorithms with mathematical analysis, Cam-
bridge Univ Pr, 2007.

[9] G. Erich, H. Richard, J. Ralph, and V. John,Design patterns: elements of reusable object-
oriented software, Addison Wesley Publishing Company, 1995.

[10] M. Fowler and K. Beck, Refactoring: improving the design of existing code, Addison-
Wesley Professional, 1999.

[11] C. Szyperski, J. Bosch, and W. Weck, “Component Oriented Programming”,Lecture Notes
in Computer Science, vol. 1743, pp. 184–184, 1999.

[12] D. Brugali and P. Scandurra, “Component-based RoboticEngineering Part I: Reusable
building blocks”, IEEE Robotics and Automation Magazine,, December 2009.

[13] D. Brugali and E. Prassler, “Software Engineering for Robotics”, IEEE Robotics & Au-
tomation Magazine, vol. 26, no. 3, pp. 9, 2009.

74

http://www.businessdictionary.com/definition/best-practice.html
http://dictionary.reference.com/browse/benchmark

BIBLIOGRAPHY

[14] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping: part I”, inIEEE
Robotics & Automation Magazine, 2006, vol. 13.

[15] T. Bailey and H. Durrant-Whyte, “Simultaneous localization and mapping (slam): part II”,
in IEEE Robotics & Automation Magazine, 2006, vol. 13.

[16] David G. Lowe, “Distinctive image features from scale-invariant keypoints”, inInterna-
tional Journal of Computer Vision, November 2004, vol. 60, pp. 91–110.

[17] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool, “Surf:Speeded up robust features”,
in Computer Vision ECCV 2006. 2006, vol. 3951/2006, pp. 404–417, Springer Berlin /
Heidelberg.

[18] Andrew J. Davison, Ian D. Reid, Nicholas D. Molton, and Olivier Stasse, “Monoslam: Real-
time single camera slam”, inTransactions on Pattern Analysis and Machine Intelligence,
June 2007, vol. 29.

[19] R.B. Rusu, Z.C. Marton, N. Blodow, M. Dolha, and M. Beetz, “Towards 3d point cloud
based object maps for household environments”,Robotics and Autonomous Systems, vol.
56, no. 11, pp. 927–941, 2008.

[20] M. Levoy, “The digital michelangelo project”, pp. 2–11, 1999.

[21] Edmund Milke and Stafan Christen, “Best practice in mobile manipulation - motion plan-
ning and control”, Master’s thesis, University of Applied Sciences Bonn-Rhein-Sieg, 2009.

[22] G. Hirzinger, T. Bodenmiiller, H. Hirschmuller, R. Liu, W. Sepp, M. Suppa, T. Abmayr, and
B. Strackenbrock, “Photo-realistic 3d modelling-from robotics perception towards cultural
heritage”,Recording, Modeling and Visualization of Cultural Heritage, p. 361, 2006.

[23] S. You, J. Hu, U. Neumann, and P. Fox, “Urban site modeling from lidar”, Lecture Notes
in Computer Science, pp. 579–588, 2003.

[24] Q. Pan, G. Reitmayr, and T. Drummond, “ProFORMA: Probabilistic Feature-based On-
line Rapid Model Acquisition”, inProc. 20th British Machine Vision Conference (BMVC),
London, September 2009.

[25] Andreas Nüchter,3D Robotic Mapping The Simultaneous Localization and Mapping Prob-
lem with Six Degrees of Freedom, Springer, 2008.

[26] PJ Besl and HD McKay, “A method for registration of 3-d shapes”, IEEE Transactions on
pattern analysis and machine intelligence, vol. 14, no. 2, pp. 239–256, 1992.

[27] Zhengyou Zhang, “Iterative point matching for registration of free-form curves”, 1992,
271.

[28] J. O’Rourke and JE Goodman,Handbook of Discrete and Computational Geometry, CRC
Press, 1997.

[29] J.D. Boissonnat and M. Teillaud,Effective computational geometry for curves and surfaces,
Springer, 2007.

75

BIBLIOGRAPHY

[30] J. Neider, T. Davis, and W. Mason,OpenGL Programming Guide: The Red Book, Addison-
Wesley, 1994.

[31] D. Calisi, L. Iocchi, and D. Nardi, “A unified benchmark framework for autonomous Mobile
robots and Vehicles Motion Algorithms (MoVeMA benchmarks)”, University of Rome,
2008.

[32] Fabio P. Bonsignorio, John Hallam, and Angel P. del Pobil, “Good experimental methodolo-
gies in robotics: State of the art and perspectives”, inProc. of the Workshop on Performance
Evaluation and Benchmarking for Intelligent Robots and Systems, IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2007.

[33] I. Ranó and J. Minguez, “Steps towards the automatic evaluation of robot obstacle avoid-
ance algorithms”, inProc. of Workshop of Benchmarking in Robotics, in the IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS). Citeseer, 2006.

[34] F. Amigoni, M. Reggiani, and V. Schiaffonati, “An insightful comparison between experi-
ments in mobile robotics and in science”,Autonomous Robots, pp. 1–13, 2009.

[35] N. Munoz, J. Valencia, and N. Londoño, “Evaluation of navigation of an autonomous
mobile robot”, inProc. of Int. Workshop on Performance Metrics for Intelligent Systems
Workshop (PerMIS), 2007, pp. 15–21.

[36] Fabio Bonsignorio, John Hallam, and Angel P. del Pobil,“Good experimental methodologiy
guidelines”, Tech. Rep., EURON Special Interet Group on Good Experimental Methodol-
ogy, 2008.

[37] D.S. Johnson, “A theoreticianś guide to the experimental analysis of algorithms”,American
Mathematical Society, vol. 220, no. 5-6, pp. 215–250, 2002.

[38] F.P. Bonsignorio, J. Hallam, and A.P. del Pobil, “Defining the Requisites of a Replicable
Robotics Experiment”, inWorkshop on GOOD EXPERIMENTAL METHODOLOGY IN
ROBOTICS, RSS, 2009.

[39] F. Amigoni, S. Gasparini, and M. Gini, “Good experimental methodologies for robotic
mapping: A proposal”, inProc. of the IEEE Int. Conf. on Robotics & Automation (ICRA),
2007.

[40] M. Magnusson, A. Nüchter, C. Lörken, A.J. Lilienthal, and J. Hertzberg, “Evaluation of 3D
Registration Reliability and Speed–A Comparison of ICP andNDT”, in Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA), Kobe, Japan, 2009,
pp. 3907–3912.

[41] A. Nüchter, K. Lingemann, J. Hertzberg, and H. Surmann, “6d slam-3d mapping outdoor
environments”,Journal of Field Robotics, vol. 24, 2007.

[42] B. Mederos, L. Velho, and L.H. De Figueiredo, “Smooth surface reconstruction from noisy
clouds”, Journal of the Brazilian Computing Society, vol. 1, 2004.

[43] T. Zinsser, J. Schmidt, and H. Niemann, “A refined icp algorithm for robust 3-d correspon-
dence estimation”, inImage Processing, 2003. ICIP 2003. Proceedings. 2003 International
Conference on, 2003, vol. 2.

76

BIBLIOGRAPHY

[44] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C.T. Silva, “Computing and
Rendering Point set surfaces”, inProceedings of the conference on Visualization’01. IEEE
Computer Society Washington, DC, USA, 2003, pp. 21–28.

[45] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface reconstruction”, inProceedings
of the fourth Eurographics symposium on Geometry processing. Eurographics Association,
2006, p. 70.

[46] JC Carr, RK Beatson, BC McCallum, WR Fright, TJ McLennan, and TJ Mitchell, “Smooth
surface reconstruction from noisy range data”,ACM GRAPHITE, vol. 3, pp. 119–126, 2003.

[47] JC Carr, RK Beatson, JB Cherrie, TJ Mitchell, WR Fright,BC McCallum, and TR Evans,
“Reconstruction and representation of 3d objects with radial basis functions”, inProceed-
ings of the 28th annual conference on Computer graphics and interactive techniques. ACM
New York, NY, USA, 2001, pp. 67–76.

[48] M. Pauly, M. Gross, and L.P. Kobbelt, “Efficient simplification of point-sampled surfaces”,
in IEEE visualization. Citeseer, 2002, vol. 2002, pp. 163–170.

[49] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle, “Surface reconstruction
from unorganized points”,COMPUTER GRAPHICS-NEW YORK-ASSOCIATION FOR
COMPUTING MACHINERY-, vol. 26, pp. 71–71, 1992.

[50] PHS Torr and A. Zisserman, “MLESAC: A new robust estimator with application to esti-
mating image geometry”,Computer Vision and Image Understanding, vol. 78, no. 1, pp.
138–156, 2000.

[51] N.J. Mitra and A. Nguyen, “Estimating surface normals in noisy point cloud data”, in
Proceedings of the nineteenth annual symposium on Computational geometry. ACM New
York, NY, USA, 2003, pp. 322–328.

[52] L. Silva, O.R.P. Bellon, and K.L. Boyer, “Precision range image registration using a robust
surface interpenetration measure and enhanced genetic algorithms”, IEEE transactions on
pattern analysis and machine intelligence, pp. 762–776, 2005.

[53] O. Cordón, S. Damas, and J. Santamarı́a, “A fast and accurate approach for 3D image
registration using the scatter search evolutionary algorithm”, Pattern Recognition Letters,
vol. 27, no. 11, pp. 1191–1200, 2006.

[54] S. Carpin and A. Censi, “An experimental assessment of the HSM3D algorithm for sparse
and colored data”, inInternational Conference on Intelligent Robots and Systems (IROS),
2009.

[55] D. Akca, “Matching of 3D surfaces and their intensities”, ISPRS Journal of Photogramme-
try and Remote Sensing, vol. 62, no. 2, pp. 112–121, 2007.

[56] A.E. Johnson and S.B. Kang, “Registration and integration of textured 3D data”,Image
and Vision Computing, vol. 17, no. 2, pp. 135–147, 1999.

[57] N. Gelfand, N.J. Mitra, L.J. Guibas, and H. Pottmann, “Robust global registration”, in
Symposium on Geometry Processing, 2005, vol. 2, p. 5.

77

BIBLIOGRAPHY

[58] G.C. Sharp, S.W. Lee, and D.K. Wehe, “ICP registration using invariant features”,IEEE
Transactions on Pattern Analysis and Machine Intelligence, pp. 90–102, 2002.

[59] R.B. Rusu, N. Blodow, Z.C. Marton, and M. Beetz, “Aligning point cloud views using per-
sistent feature histograms”, inProceedings of the 21st IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Nice, France, 2008.

[60] R.B. Rusu, N. Blodow, and M. Beetz, “Fast Point Feature Histograms (FPFH) for 3D Regis-
tration”, in Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), Kobe, Japan, 2009.

[61] A. Makadia, AI Patterson, and K. Daniilidis, “Fully automatic registration of 3D point
clouds”, inCVPR. Citeseer, 2006, vol. 6, pp. 1297–1304.

[62] S. Rusinkiewicz and M. Levoy, “Efficient variants of theicp algorithm”, inProc. 3DIM,
2001, pp. 145–152.

[63] A. Nüchter, K. Lingemann, and J. Hertzberg, “Cached kdtree search for icp algorithms”,
in 3-D Digital Imaging and Modeling, 2007. 3DIM’07. Sixth International Conference on,
2007, pp. 419–426.

[64] S. Arya, D.M. Mount, N.S. Netanyahu, R. Silverman, and A.Y. Wu, “An optimal algo-
rithm for approximate nearest neighbor searching fixed dimensions”, Journal of the ACM
(JACM), vol. 45, no. 6, pp. 891–923, 1998.

[65] C. Silpa-Anan and R. Hartley, “Localisation using an image-map”, inProceedings of the
Australian Conference on Robotics and Automation, 2004.

[66] C. Silpa-Anan and R. Hartley, “Optimised KD-trees for fast image descriptor matching”,
in Proc. CVPR, 2008, pp. 1–8.

[67] T. Liu, A.W. Moore, A. Gray, and K. Yang, “An investigation of practical approximate
nearest neighbor algorithms”, inAdvances in neural information processing systems. 2004,
Citeseer.

[68] D. Nister and H. Stewenius, “Scalable recognition witha vocabulary tree”, inProc. CVPR,
2006, vol. 5.

[69] M. Muja and D.G. Lowe, “Fast approximate nearest neighbors with automatic algorithm
configuration”, inInternational Conference on Computer Vision Theory and Applications
(VISAPP’09), 2009.

[70] B. Leibe, K. Mikolajczyk, and B. Schiele, “Efficient clustering and matching for object
class recognition”, inProc. BMVC, 2006.

[71] K. Mikolajczyk and J. Matas, “Improving descriptors for fast tree matching by optimal lin-
ear projection”, inComputer Vision, 2007. ICCV 2007. IEEE 11th International Conference
on. Citeseer, 2007, pp. 1–8.

[72] Michael Connor and Piyush Kumar, “Fast construction ofk-nearest neighbor graphs for
point clouds”, inIEEE Transactions on Visualization and Computer Graphics, September
2009.

78

BIBLIOGRAPHY

[73] D. Qiu, S. May, and A. Nüchter, “GPU-accelerated Nearest Neighbor Search for 3D Reg-
istration”, 2009.

[74] K. Zhou, Q. Hou, R. Wang, and B. Guo, “Real-time kd-tree construction on graphics hard-
ware”, inACM SIGGRAPH Asia 2008 papers. ACM, 2008, p. 126.

[75] A. Nüchter, O. Wulf, K. Lingemann, J. Hertzberg, B. Wagner, and H. Surmann, “3D map-
ping with semantic knowledge”,Lecture Notes in Computer Science, vol. 4020, pp. 335,
2006.

[76] C. Langis, M. Greenspan, and G. Godin, “The parallel iterative closest point algorithm”, in
Proceedings of the Third International Conference on, 2001, pp. 195–202.

[77] A Nüchter, “Parallel and Cached Scan Matching for Robotic 3D Mapping”, Journal of
Computing and Information Technology, vol. 17, no. 1, pp. 51–65, 2009.

[78] KS Arun, TS Huang, and SD Blostein, “Least-squares fitting of two 3-D point sets.”,IEEE
TRANS. PATTERN ANAL. MACH. INTELLIG., vol. 9, no. 5, pp. 698–700, 1987.

[79] B.K.P. Horn, H.M. Hilden, and S. Negahdaripour, “Closed-form solution of absolute ori-
entation using orthonormal matrices”,Journal of the Optical Society of America A, vol. 5,
no. 7, pp. 1127–1135, 1988.

[80] B.K.P. Horn et al., “Closed-form solution of absolute orientation using unit quaternions”,
Journal of the Optical Society of America A, vol. 4, no. 4, pp. 629–642, 1987.

[81] M.W. Walker, L. Shao, and R.A. Volz, “Estimating 3-D location parameters using dual
number quaternions”,CVGIP: image understanding, vol. 54, no. 3, pp. 358–367, 1991.

[82] DW Eggert, A. Lorusso, and RB Fisher, “Estimating 3-D rigid body transformations: a
comparison of four major algorithms”,Machine Vision and Applications, vol. 9, no. 5, pp.
272–290, 1997.

[83] H. Pottmann, S. Leopoldseder, and M. Hofer, “Registration without ICP”,Computer Vision
and Image Understanding, vol. 95, no. 1, pp. 54–71, 2004.

[84] Radu Bogdan Rusu, Aravind Sundaresan, Benoit Morisset, Kris Hauser, Motilal Agrawal,
and Jean-Claude Latombe, “Leaving Flatland: Efficient real-time three-dimensional per-
ception and motion planning”,Journal of Field Robotics, vol. 26, no. 10, 2009.

[85] Martin Magnusson, Achim Lilienthal, and Tom Duckett, “Scan registration for autonomous
mining vehicles using 3D-NDT”,Journal of Field Robotics, vol. 24, no. 10, pp. 803–827,
2007.

[86] R. Schnabel, R. Wahl, and R. Klein, “Efficient RANSAC forpoint-cloud shape detection”,
in Computer Graphics Forum. Citeseer, 2007, vol. 26, pp. 214–226.

[87] C. Brenneke, O. Wulf, and B. Wagner, “Using 3d laser range data for slam in outdoor envi-
ronments”, in2003 IEEE/RSJ International Conference on Intelligent Robots and Systems,
2003.(IROS 2003). Proceedings, 2003, vol. 1.

79

BIBLIOGRAPHY

[88] C. Parra, R. Murrieta-Cid, M. Devy, and M. Briot, “3-d modelling and robot localization
from visual and range data in natural scenes”,Lecture Notes in Computer Science, pp.
450–468, 1998.

[89] J. Weingarten, G. Gruener, and R. Siegwart, “A fast and robust 3D feature extraction algo-
rithm for structured environment reconstruction”, inInternational Conference on Advanced
Robotics, Coimbra, Portugal. Citeseer, 2003.

[90] A. Sappa and M. Devy, “Fast range image segmentation by an edge detection strategy”,
in Proceedings of Third International Conference on 3-D Digital Imaging and Modeling,
2001, vol. 3.

[91] PJ Besl and RC Jain, “Segmentation through variable-order surface fitting”,IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 10, no. 2, pp. 167–192, 1988.

[92] T. Rabbani, F. van den Heuvel, and G. Vosselmann, “Segmentation of point clouds using
smoothness constraint”,International Archives of Photogrammetry, Remote Sensingand
Spatial Information Sciences, vol. 36, no. 5, pp. 248–253, 2006.

[93] E. Bittar, N. Tsingos, and M.P. Gascuel, “Automatic reconstruction of unstructured 3d data:
Combining medial axis and implicit surfaces”, inComputer Graphics Forum. Citeseer,
1995, vol. 14, pp. 457–468.

[94] Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, and H.P. Seidel, “Multi-level partition of unity
implicits”, p. 173, 2005.

[95] G. Guennebaud and M. Gross, “Algebraic point set surfaces”, ACM Transactions on Graph-
ics (TOG), vol. 26, no. 3, pp. 23, 2007.

[96] C. Oztireli, G. Guennebaud, and M. Gross, “Feature preserving point set surfaces based on
non-linear kernel regression”, inComputer Graphics Forum. Blackwell Publishing, 2009,
vol. 28, pp. 493–501.

[97] J.D. Boissonnat, “Geometric structures for three-dimensional shape representation”,ACM
Transactions on Graphics (TOG), vol. 3, no. 4, pp. 266–286, 1984.

[98] N. Amenta, M. Bern, and M. Kamvysselis, “A new Voronoi-based surface reconstruction
algorithm”, inProceedings of the 25th annual conference on Computer graphics and inter-
active techniques. ACM New York, NY, USA, 1998, pp. 415–421.

[99] N. Amenta, S. Choi, TK Dey, and N. Leekha, “A simple algorithm for homeomorphic sur-
face reconstruction”, inProceedings of the sixteenth annual symposium on Computational
geometry. ACM, 2002, p. 222.

[100] N. Amenta, S. Choi, and R.K. Kolluri, “The power crust,unions of balls, and the medial
axis transform”,Computational Geometry: Theory and Applications, vol. 19, no. 2-3, pp.
127–153, 2001.

[101] T.K. Dey and S. Goswami, “Tight cocone: a water-tight surface reconstructor”,Journal of
Computing and Information Science in Engineering, vol. 3, pp. 302, 2003.

80

BIBLIOGRAPHY

[102] T.K. Dey and S. Goswami, “Provable surface reconstruction from noisy samples”,Compu-
tational Geometry: Theory and Applications, vol. 35, no. 1-2, pp. 124–141, 2004.

[103] R. Kolluri, J.R. Shewchuk, and J.F. O’Brien, “Spectral surface reconstruction from noisy
point clouds”, inProceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on
Geometry processing. ACM New York, NY, USA, 2004, pp. 11–21.

[104] H. Edelsbrunner and E.P. Mücke, “Three-dimensionalalpha shapes”, inProceedings of the
1992 workshop on Volume visualization. ACM, 1992, p. 82.

[105] P. Labatut, J.P. Pons, and R. Keriven, “Efficient multi-view reconstruction of large-scale
scenes using interest points, delaunay triangulation and graph cuts”,Computer Vision, pp.
1–8, 2007.

[106] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, G. Taubin, et al., “The ball-pivoting
algorithm for surface reconstruction”,IEEE Transactions on Visualization and Computer
Graphics, vol. 5, no. 4, pp. 349–359, 1999.

[107] J. Schöberl, “NETGEN An advancing front 2D/3D-mesh generator based on abstract rules”,
Computing and Visualization in Science, vol. 1, no. 1, pp. 41–52, 1997.

[108] S. Rebay, “Efficient unstructured mesh generation by means of Delaunay triangulation and
Bowyer-Watson algorithm”,Journal of Computational Physics, vol. 106, no. 1, pp. 125–
138, 1993.

[109] P. Cignoni, C. Rocchini, and R. Scopigno, “Metro: measuring error on simplified surfaces”,
in Computer Graphics Forum, 1998, vol. 17, pp. 167–174.

[110] Thomas Wisspeintner, Walter Nowak, and Ansgar Bredenfeld, RoboCup 2005: Robot Soc-
cer World Cup IX, vol. 4020, chapter VolksBot - A Flexible Component-Based Mobile
Robot System, pp. 716–723, Springer Berlin Heidelberg, 2006.

[111] A.S. Tanenbaum and M Van Steen,Distributed Systems: Principles and Paradigms, Pren-
tice Hall, 2nd edition, October 2006.

[112] P. Martz, “OpenSceneGraph Quick Start Guide”, Tech. Rep., Skew Matrix Software, 2007.

[113] Morten Strandberg,Robot path planning: an object-oriented approach, PhD thesis, KTH,
Signals, Sensors and Systems, 2004.

[114] L. Andrade, JL Fiadeiro, J. Gouveia, and G. Koutsoukos, “Separating computation, coordi-
nation and configuration”,Software Focus, vol. 14, no. 5, pp. 353–369, 2002.

[115] M. Radestock and S. Eisenbach, “Coordinating components in middleware systems”,Soft-
ware Focus, vol. 15, no. 13, pp. 1205–1231, 2003.

[116] M. Radestock and S. Eisenbach, “Coordination in evolving systems”, Lecture Notes in
Computer Science, pp. 162–176, 1996.

[117] S.J. Owen, “A survey of unstructured mesh generation technology”, in7th International
Meshing Roundtable. Citeseer, 1998, vol. 3.

81

BIBLIOGRAPHY

[118] J. Peng, C.S. Kim, and C.C. Jay Kuo, “Technologies for 3d mesh compression: A survey”,
Journal of Visual Communication and Image Representation, vol. 16, no. 6, pp. 688–733,
2005.

[119] R.C. Martin,Agile software development: principles, patterns, and practices, Prentice Hall
PTR Upper Saddle River, NJ, USA, 2003.

82

Appendix A

UML Class diagrams

This Appendix presents UML class diagrams of the investigated parts in the public available li-

braries. Please note that some minor relevant methods are not displayed, to improve the readability.

A.1 Data-type representations in existing libraries

A.1.1 Cartesian point representations in existing libraries

Point

x : double

y : double

z : double

type : int

Point()

Point(in p : Point)

Point(in p : double)

transform(in alignxf : double) : void

operator <<(inout os : ostream, in p : Point) : ostream

operator >>(inout is : istream, inout p : Point) : istream

Figure A.1: UML class diagram of Cartesian point representation in 6DSLAM library.

83

Appendix A. UML Class diagrams

CPoint

AddComponents(inout p : CPoseOrPoint) : void

operator *=(in s : double) : void

CPoseOrPoint

m_is3D : bool

m_x : double

m_y : double

m_z : double

CPoseOrPoint()

is3DPoseOrPoint() : bool

distanceTo(in b : CPoseOrPoint) : double

distanceTo(in b : TPoint3D) : double

sqrDistanceTo(in b : CPoseOrPoint) : double

norm() : double

operator *=(in s : double) : void

getAsVector(inout v : vector_double) : void

getAsVectorVal() : vector_double

getHomogeneousMatrixVal() : CMatrixDouble44

getHomogeneousMatrix(inout out_HM : CMatrixDouble4...

getInverseHomogeneousMatrix(inout out_HM : math::C...

distance2DTo(in ax : double, in ay : double) : dou...

distance3DTo(in ax : double, in ay : double, in az...

distance2DToSquare(in ax : double, in ay : double)...

distance3DToSquare(in ax : double, in ay : double,...

CPoint2D

CPoint2D(in x : double = 0, in y : double = 0)

CPoint2D(in o : TPoint2D)

operator -(in b : CPose2D) : CPoint2D

getAsVector(inout v : vector_double) : void

getHomogeneousMatrix(inout out_HM : CMatrixDouble4...

CPose2D

m_phi : double

CPose2D(in x : double = 0, in y : double = 0, in p...

CPose2D(in : CPoint2D)

phi() : double

phi(in angle : double) : void

phi_incr(in Aphi : double) : void

getAsVector(inout v : vector_double) : void

getHomogeneousMatrix(inout out_HM : CMatrixDouble4...

operator +(in D : CPose2D) : CPose2D

composeFrom(in A : CPose2D, in B : CPose2D) : void...

operator +(in u : CPoint2D) : CPoint2D

operator +(in u : CPoint3D) : CPoint3D

operator -(in b : CPose2D) : CPose2D

AddComponents(inout p : CPose2D) : void

operator *=(in s : double) : void

operator +=(in b : CPose2D) : CPose2D

normalizePhi() : void

<<friend>>

<<friend>>

<<friend>>

CPose3D

m_HM : CMatrixDouble44

rebuildHomogeneousMatrix() : void

operator =(in o : CPose3D) : CPose3D

CPose3D(in : TPose3D)

getHomogeneousMatrix(inout out_HM : CMatrixDouble4...

operator +(in b : CPose3D) : CPose3D

operator +(in b : CPoint3D) : CPoint3D

addComponents(in p : CPose3D) : void

normalizeAngles() : void

operator *=(in s : double) : void

sphericalCoordinates(in point : CPoint3D, inout ou...

composePoint(in local_point : TPoint3D, inout glob...

setFromValues(in x0 : double, in y0 : double, in z...

setYawPitchRoll(in yaw_ : double, in pitch_ : doub...

getYawPitchRoll(inout yaw : double, inout pitch : ...

pitch() : double

roll() : double

distanceEuclidean6D(in o : CPose3D) : double

getAsVector(inout v : vector_double) : void

getAsQuaternion(inout q : mrpt::math::CQuaternionD...

composeFrom(in A : CPose3D, in B : CPose3D) : void...

operator +=(in b : CPose3D) : CPose3D

CPoint3D

CPoint3D(in x : double = 0, in y : double = 0, in ...

CPoint3D(in : TPoint3D)

operator -(in b : CPoint3D) : CPoint3D

operator +(in b : CPoint3D) : CPoint3D

getAsVector(inout v : vector_double) : void

getHomogeneousMatrix(inout out_HM : CMatrixDouble4...

CPose

operator -(in b : CPose3D) : CPose3D

operator -(in b : CPoint3D) : CPoint3D

Figure A.2: UML class diagram of Cartesian point representation in MRPT library.

<<struct>>

Vec3d

x : float

y : float

z : float

Figure A.3: UML class diagram of Cartesian point representation in IVT library.

84

Appendix A. UML Class diagrams

<<struct>>

StrCartesianPoint3D

dX : double

dY : double

dZ : double

StrCartesianPoint3D()

StrCartesianPoint3D(in x : double, in y : double, ...

StrCartesianPoint3D(inout point : StrCartesianPoin...

getRawData(inout dBuffer : double) : void

<<struct>>

StrPointInfo

unClass : uint

fIntensity : float

fAmplitude : float

dAccuracy : double

afRGB : float

bValid : bool

pdUserData : double

unUserDataLength : uint

StrPointInfo()

StrPointInfo(inout info : StrPointInfo)

setColor(inout pfColor : float) : void

Figure A.4: UML class diagram of Cartesian point representation in FAIR library.

Point32

x : float

y : float

z : float

Point32()

Point32(in copy : Point32)

operator =(in copy : Point32) : Point32

~Point32()

__s_getDataType() : std::string

__s_getMD5Sum() : std::string

__s_getMessageDefinition() : std::string

__getDataType() : std::string

__getMD5Sum() : std::string

__getMessageDefinition() : std::string

serializationLength() : uint32_t

serialize(inout write_ptr : uint8_t, in seq : uint...

deserialize(inout read_ptr : uint8_t) : uint8_t

ros::Message

Figure A.5: UML class diagram of Cartesian point representation in ROS.

Point

GetPointDimension() : uint

operator =(in r : Self) : Point

operator =(in r : ValueType) : Point

operator ==(in pt : Self) : bool

operator !=(in pt : Self) : bool

operator +=(in vec : VectorType) : Self

operator -=(in vec : VectorType) : Self

operator -(in pnt : Self) : VectorType

operator +(in vec : VectorType) : Self

operator -(in vec : VectorType) : Self

GetVectorFromOrigin() : VectorType

CastFrom(in pa : Point) : void

SquaredEuclideanDistanceTo(in pa : Point) : RealTy...

EuclideanDistanceTo(in pa : Point) : RealType

TCoordRep, unsigned int NPointDimension

<<bind>> <TValueType->TCoordRep, unsigned int VLength->NPointDimension>

FixedArray

TValueType, unsigned int VLength

Figure A.6: UML class diagram of Cartesian point representation in ITK library.

85

Appendix A. UML Class diagrams

Point3

Point3(in nx : Scalar, in ny : Scalar, in nz : Sca...

Point3(in p : Point3)

Point3(in nv : Scalar)

Point3(in other : Eigen::MatrixBase<OtherDerived>)...

Construct(in P0 : Q, in P1 : Q, in P2 : Q) : Point...

GetBBox(inout bb : vcg::Box3<_Scalar>) : vcg::Box3...

_Scalar

Eigen::Matrix<_Scalar,3,1>

Figure A.7: UML class diagram of Cartesian point representation in Meshlab.

Vector

data : double

Vector(in x : double, in y : double, in z : double...

operator =(in arg : Vector) : Vector

operator ()(in index : int) : double

operator [](in index : int) : double

ReverseSign() : void

operator -=(in arg : Vector) : Vector

operator +=(in arg : Vector) : Vector

operator *(in lhs : Vector, in rhs : double) : Vec...

operator *(in lhs : double, in rhs : Vector) : Vec...

operator /(in lhs : Vector, in rhs : double) : Vec...

operator +(in lhs : Vector, in rhs : Vector) : Vec...

operator -(in lhs : Vector, in rhs : Vector) : Vec...

operator *(in lhs : Vector, in rhs : Vector) : Vec...

operator -(in arg : Vector) : Vector

dot(in lhs : Vector, in rhs : Vector) : double

SetToZero(inout v : Vector) : void

Zero() : Vector

Normalize(in eps : double = epsilon) : double

Norm() : double

Set2DXY(in v : Vector2) : void

Set2DYZ(in v : Vector2) : void

Set2DZX(in v : Vector2) : void

Set2DPlane(in F_someframe_XY : Frame, in v_XY : Ve...

Equal(in a : Vector, in b : Vector, in eps : doubl...

operator ==(in a : Vector, in b : Vector) : bool

operator !=(in a : Vector, in b : Vector) : bool

Figure A.8: UML class diagram of Cartesian point representation in KDL library.

86

Appendix A. UML Class diagrams

A.1.2 Cartesian point cloud representations in existing libraries

<<vector>>

allScans

<<vector>>

meta_parts

Scan

- points : Point

- points_red : double

- points_red_size : int

- closest_cache : KDCache*

- kd : Tree

- points_red_lum : double

- treeTransMat_inv : double

- dalignxf : double

- outputFrames : bool

- dir : string

- numberOfScans : uint

- scanNr : uint

- fileNr : int

- sout : stringstream

- maxDist2 : int

+ get_transMat() : double

+ get_rPos() : double

+ get_rPosTheta() : double

+ get_rPosQuat() : double

+ transformAll(in alignxf : double) : void

+ transform(in alignxf : double, in type : AlgoType,...

+ transformToEuler(in rP : double, in rPT : double, ...

+ transformToQuat(in rP : double, in rPQ : double, i...

+ calcReducedPoints(in voxelSize : double) : void

+ createTrees(in use_cache : bool) : void

+ deleteTrees() : void

+ initCache(in Source : Scan, in Target : Scan) : KD...

+ getPtPairs(inout pairs : vector<PtPair>, inout Sou...

+ getPtPairsCache(inout pairs : vector<PtPair>, inou...

+ getPtPairsParallel(inout pairs : vector<PtPair>, i...

+ getPtPairsCacheParallel(inout pairs : vector<PtPai...

+ operator <<(inout os : ostream, in s : Scan) : ost...

+ operator <<(inout os : ostream, in matrix : double...

+ get_points_red_size() : int

+ resetPose() : void

+ readScans(in type : reader_type, in start : int, i...

+ get_points() : vector<Point>

+ get_points_red() : double

- createTree(in use_cache : bool) : void

- deleteTree() : void

Figure A.9: UML class diagram of Cartesian point cloud representation in 6DSLAM library.

87

Appendix A. UML Class diagrams

CMetricMap

+ m_disableSaveAs3DObject : bool

+ clear() : void

+ isEmpty() : bool

+ insertObservation(in obs : CObservation, in robotP...

+ computeMatchingWith3D(in otherMap : CMetricMap, in...

+ compute3DMatchingRatio(in otherMap : CMetricMap, i...

+ saveMetricMapRepresentationToFile(in filNamePrefix...

+ getAs3DObject(inout outObj : mrpt::opengl::CSetOfO...

+ squareDistanceToClosestCorrespondence(in x0 : floa...

CColouredPointsMap

m_min_dist : vector_float

+ ~CColouredPointsMap()

+ copyFrom(in obj : CPointsMap) : void

+ loadFromRangeScan(in rangeScan : CObservation2DRan...

+ load3D_from_text_file(in file : std::string) : boo...

+ save3D_and_colour_to_text_file(in file : std::stri...

+ clear() : void

+ fuseWith(inout otherMap : CPointsMap, in minDistFo...

+ setPoint(in index : size_t, inout p : CPoint3D) : ...

+ setPoint(in index : size_t, in x : float, in y : f...

+ insertPoint(in x : float, in y : float, in z : flo...

+ insertPoint(in p : CPoint3D) : void

+ applyDeletionMask(inout mask : std::vector<bool>) ...

+ insertPoint(in x : float, in y : float, in z : flo...

+ insertObservation(in obs : CObservation, in robotP...

+ computeObservationLikelihood(in obs : CObservation...

+ auxParticleFilterCleanUp() : void

+ reserve(in newLength : size_t) : void

+ setAllPoints(in X : vector_float, in Y : vector_fl...

+ getAs3DObject(inout outObj : mrpt::opengl::CSetOfO...

+ colourFromObservation(in obs : CObservationImage, ...

+ resetPointsMinDist(in defValue : float = 2000.0f) ...

CSimplePointsMap

+ ~CSimplePointsMap()

+ CSimplePointsMap()

+ copyFrom(in obj : CPointsMap) : void

+ loadFromRangeScan(in rangeScan : CObservation3DRan...

+ load3D_from_text_file(in file : std::string) : boo...

+ clear() : void

+ fuseWith(inout otherMap : CPointsMap, in minDistFo...

+ insertAnotherMap(inout otherMap : CPointsMap, in o...

+ setPoint(in index : size_t, inout p : CPoint3D) : ...

+ setPoint(in index : size_t, in x : float, in y : f...

+ insertPoint(in x : float, in y : float, in z : flo...

+ insertPoint(in new_pnt : mrpt::math::TPoint3D) : v...

+ applyDeletionMask(inout mask : std::vector<bool>) ...

+ insertObservation(in obs : CObservation, in robotP...

+ computeObservationLikelihood(in obs : CObservation...

+ auxParticleFilterCleanUp() : void

+ reserve(in newLength : size_t) : void

+ setAllPoints(in X : vector_float, in Y : vector_fl...

CPointsMap

m_parent : CMultiMetricMap

x : float

y : float

z : float

pointWeight : uint32_t

m_largestDistanceFromOrigin : float

m_largestDistanceFromOriginIsUpdated : bool

m_KDTreeDataIsUpdated : bool

+ COLOR_3DSCENE_R : float

+ COLOR_3DSCENE_G : float

+ COLOR_3DSCENE_B : float

build_kdTree3D() : void

+ kdTreeNClosestPoint3D(in x0 : float, in y0 : float...

+ loadFromRangeScan(in rangeScan : CObservation2DRan...

+ load3D_from_text_file(in file : std::string) : boo...

+ save3D_to_text_file(in file : std::string) : bool

+ saveMetricMapRepresentationToFile(in filNamePrefix...

+ clear() : void

+ size() : size_t

+ getPointsCount() : size_t

+ getPoint(in index : size_t, inout x : float, inout...

+ setPoint(in index : size_t, inout p : CPoint3D) : ...

+ getAllPoints(inout xs : std::vector<float>, inout ...

+ insertPoint(in p : CPoint3D) : void

+ setAllPoints(in X : vector_float, in Y : vector_fl...

+ isEmpty() : bool

+ getAs3DObject(inout outObj : mrpt::opengl::CSetOfO...

+ compute3DMatchingRatio(in otherMap : CMetricMap, i...

<<friend>>
<<friend>>

Figure A.10: UML class diagram of Cartesian point cloud representation in MRPT library.

CICP

+ CalculateOptimalTransformation(in pSourcePoints : Vec3d, in pTargetPoints : Vec3d, in nPoints : int, inout rotation : Mat3d, inout translation : Vec3d) : bool

Figure A.11: UML class diagram of Cartesian point cloud representation in IVT library.

88

Appendix A. UML Class diagrams

CCartesianCloud3D

- _vPoints : StrCartesianPoint3D*

- _vInfo : StrPointInfo*

- _nHasInfo : int

- _mSourceInfo : int, long

- _adTranslation : double

- _rotPoint : StrCartesianPoint3D

- _mRotationMatrix : CMatrix44

- _bForceUserDefined : bool

- _fPointSize : float

+ create(in unPoints : uint, in bHasInfo : bool) : C...

+ createSubCloud(inout pvIdx : vector<unsigned int>)...

+ operator [](in i : uint) : StrCartesianPoint3D

+ getPoint(in i : uint) : StrCartesianPoint3D

+ getInfo(in i : uint) : StrPointInfo

+ getRawCoordinates(inout pdBuffer : double) : void

+ copy(inout cloud : CCartesianCloud3D) : void

+ getCartesianCoordinates(inout ppdCloud : double) :...

+ hasInfo() : int

+ hasSourceInfo() : int

+ add(inout point : StrCartesianPoint3D, inout info ...

+ addSourceInfo(in eSourceInfo : EnumSourceInfo, in ...

+ getSourceInfo(in eSourceInfo : EnumSourceInfo, ino...

+ removeSourceInfo(in eSourceInfo : EnumSourceInfo) ...

+ removeInvalidPoints() : void

+ clearSourceInfo() : void

+ size() : uint

+ getCentroid() : StrCartesianPoint3D

+ getCentroidValidPoints() : StrCartesianPoint3D

+ transform(inout matrix : fair::CMatrix44) : void

+ createTransform(inout matrix : CMatrix44) : CCarte...

+ getReducedPoints(inout cloud : CCartesianCloud3D, ...

+ clear() : void

+ erase() : void

+ serialize(inout stream : IOutputStream) : void

+ load(inout stream : IInputStream) : CCartesianClou...

+ setTranslationVector(inout dTranslation : double) ...

+ getTranslationVector() : double

+ setRotationPoint(inout point : StrCartesianPoint3D...

+ getRotationPoint() : StrCartesianPoint3D

+ setRotationMatrix(inout matrix : CMatrix44) : void...

+ getRotationMatrix() : CMatrix44

+ setPointSize(in fPointSize : float) : void

+ getPointSize() : float

+ setColor(inout pfColor : float) : void

+ dump() : void

+ getViewVectors(inout pCloud : CCartesianCloud3D) :...

+ setValid(in bValid : bool) : void

Figure A.12: UML class diagram of Cartesian point cloud representation in FAIR library.

89

Appendix A. UML Class diagrams

PointCloud

+ header : roslib::Header

+ pts : robot_msgs::Point32

+ chan : robot_msgs::ChannelFloat32

+ PointCloud()

+ PointCloud(in copy : PointCloud)

+ operator =(in copy : PointCloud) : PointCloud

+ ~PointCloud()

+ __s_getDataType() : std::string

+ __s_getMD5Sum() : std::string

+ __s_getMessageDefinition() : std::string

+ __getDataType() : std::string

+ __getMD5Sum() : std::string

+ __getMessageDefinition() : std::string

+ set_pts_size(in __ros_new_size : uint32_t) : void

+ get_pts_size() : uint32_t

+ get_pts_vec(inout __ros_vec : std::vector<robot_ms...

+ set_pts_vec(in __ros_vec : std::vector<robot_msgs:...

+ set_chan_size(in __ros_new_size : uint32_t) : void...

+ get_chan_size() : uint32_t

+ calc_chan_array_serialization_len() : uint32_t

+ get_chan_vec(inout __ros_vec : std::vector<robot_m...

+ set_chan_vec(in __ros_vec : std::vector<robot_msgs...

+ serializationLength() : uint32_t

+ serialize(inout write_ptr : uint8_t, in seq : uint...

+ deserialize(inout read_ptr : uint8_t) : uint8_t

ros::Message

Figure A.13: UML class diagram of Cartesian point cloud representation in ROS.

90

Appendix A. UML Class diagrams

PointSet

+ PassStructure(inout inputPointSet : Self) : void

+ Initialize(in : void) : void

+ GetNumberOfPoints(in : void) : ulong

+ SetPoints(inout : PointsContainer) : void

+ SetPointData(inout : PointDataContainer) : void

+ SetPoint(in : PointIdentifier, in : PointType) :...

+ GetPoint(in : PointIdentifier, inout : PointType...

+ GetPointData(in : PointIdentifier, inout : Pixel...

+ GetBoundingBox(in : void) : BoundingBoxType

+ FindClosestPoint(inout : CoordRepType, inout poin...

+ UpdateOutputInformation() : void

+ Graft(in data : DataObject) : void

+ RequestedRegionIsOutsideOfTheBufferedRegion() : bo...

+ VerifyRequestedRegion() : bool

+ SetRequestedRegion(inout data : DataObject) : void...

+ SetBufferedRegion(in region : RegionType) : void

PrintSelf(inout os : std::ostream, in indent : Ind...

- operator =(in : Self) : void

TPixelType,

 unsigned int VDimension, TMeshTraits

Figure A.14: UML class diagram of Cartesian point cloud representation in ITK library.

PointMatching

+ ComputeSimilarityMatchMatrix(inout res : Matrix44x, inout Pfix : std::vector<Point3x>, inout Pmov : std::vector<Point3x>) : bool

+ ComputeRigidMatchMatrix(inout res : Matrix44x, inout Pfix : std::vector<Point3x>, inout Pmov : std::vector<Point3x>) : bool

+ ComputeRigidMatchMatrix(inout res : Matrix44x, inout Pfix : std::vector<Point3x>, inout Pmov : std::vector<Point3x>, inout q : Quaternionx, inout tr : Point3x) : bool

+ ComputeMatchMatrix(inout res : Matrix44x, inout Ps : std::vector<Point3x>, inout Ns : std::vector<Point3x>, inout Pt : std::vector<Point3x>) : bool

ScalarType

Figure A.15: UML class diagram of Cartesian point cloud representation in Meshlab.

91

Appendix A. UML Class diagrams

A.1.3 Tringle mesh representations in existing libraries

vtkPoints

Bounds : double

ComputeTime : vtkTimeStamp

SetData(inout : vtkDataArray) : void

GetData() : vtkDataArray

SetDataType(in dataType : int) : void

GetPoint(in id : vtkIdType) : double

SetPoint(in id : vtkIdType, in x : double, in y : double, in...

vtkLine

PrintSelf(inout os : ostream, in indent : vtkIndent) : void

GetCellDimension() : int

GetNumberOfEdges() : int

GetNumberOfFaces() : int

GetEdge(in : int) : vtkCell

Triangulate(in index : int, inout ptIds : vtkIdList, inout p...

vtkCell

PointIds : vtkIdList

Bounds : double

GetCellType() : int

GetPoints() : vtkPoints

GetNumberOfPoints() : vtkIdType

GetNumberOfEdges() : int

GetNumberOfFaces() : int

GetPointIds() : vtkIdList

GetBounds(in bounds : double) : void

GetLength2() : double

vtkDataArray

LookupTable : vtkLookupTable

Range : double

InsertNextTuple(in j : vtkIdType, inout source : vtkAbstract...

GetTuples(in p1 : vtkIdType, in p2 : vtkIdType, inout output...

vtkTriangle

PrintSelf(inout os : ostream, in indent : vtkIndent) : void

GetEdge(in edgeId : int) : vtkCell

GetCellDimension() : int

GetNumberOfEdges() : int

GetNumberOfFaces() : int

GetFace(in : int) : vtkCell

Triangulate(in index : int, inout ptIds : vtkIdList, inout p...

GetEdgeArray(in edgeId : int) : int

TriangleCenter(in p1 : double, in p2 : double, in p3 : doubl...

TriangleArea(in p1 : double, in p2 : double, in p3 : double)...

ComputeNormal(inout p : vtkPoints, in numPts : int, inout pt...

vtkPolyData

PolyVertex : vtkPolyVertex

PolyLine : vtkPolyLine

Polygon : vtkPolygon

EmptyCell : vtkEmptyCell

Verts : vtkCellArray

Lines : vtkCellArray

Polys : vtkCellArray

Strips : vtkCellArray

Dummy : vtkCellArray

Cells : vtkCellTypes

Links : vtkCellLinks

PrintSelf(inout os : ostream, in indent : vtkIndent) : void

GetCellNeighbors(in cellId : vtkIdType, inout ptIds : vtkIdL...

SetVerts(inout v : vtkCellArray) : void

GetVerts() : vtkCellArray

SetLines(inout l : vtkCellArray) : void

GetLines() : vtkCellArray

GetNumberOfPolys() : vtkIdType

InsertNextCell(in type : int, in npts : int, inout pts : vtk...

InsertNextCell(in type : int, inout pts : vtkIdList) : int

DeleteCells() : void

IsTriangle(in v1 : int, in v2 : int, in v3 : int) : int

DeletePoint(in ptId : vtkIdType) : void

InsertNextLinkedPoint(in numLinks : int) : int

InsertNextLinkedPoint(in x : double, in numLinks : int) : in...

InsertNextLinkedCell(in type : int, in npts : int, inout pts...

GetData(inout info : vtkInformation) : vtkPolyData

vtkUnstructuredGrid

PolyVertex : vtkPolyVertex

PolyLine : vtkPolyLine

Pixel : vtkPixel

Polygon : vtkPolygon

Tetra : vtkTetra

Voxel : vtkVoxel

Wedge : vtkWedge

Pyramid : vtkPyramid

Connectivity : vtkCellArray

Links : vtkCellLinks

InsertNextCell(in type : int, in npts : vtkIdType, inout pts...

GetCell(in cellId : vtkIdType, inout cell : vtkGenericCell) ...

GetMaxCellSize() : int

InsertNextLinkedCell(in type : int, in npts : int, inout pts...

IsHomogeneous() : int

GetData(inout info : vtkInformation) : vtkUnstructuredGrid

Line

Triangle

Data

Line

Points

Line

Triangle

Figure A.16: UML class diagram of triangle mesh representation in VTK.

92

Appendix A. UML Class diagrams

Triangle3

_v : ScalarType

Triangle3()

Triangle3(in c0 : CoordType, in c1 : CoordType, in c2 : Coor...

P(in j : int) : CoordType

P0(in j : int) : CoordType

P1(in j : int) : CoordType

P2(in j : int) : CoordType

P(in j : int) : CoordType

P0(in j : int) : CoordType

P1(in j : int) : CoordType

P2(in j : int) : CoordType

cP0(in j : int) : CoordType

cP1(in j : int) : CoordType

cP2(in j : int) : CoordType

InterpolationParameters(in bq : CoordType, inout a : ScalarT...

QualityFace() : ScalarType

Point3

Point3(in nx : Scalar, in ny : Scalar, in nz : Scalar)

Point3(in p : Point3)

Point3(in nv : Scalar)

Point3(in other : Eigen::MatrixBase<OtherDerived>)

Construct(in P0 : Q, in P1 : Q, in P2 : Q) : Point3

GetBBox(inout bb : vcg::Box3<_Scalar>) : vcg::Box3<_Scalar>

ScalarTriangleType

_Scalar

Figure A.17: UML class diagram of triangle representation in Meshlab.

TriMeshEdgeHolder

VertContainerType, FaceContainerType, EdgeContainerType

<VertContainerType->VertContainerType, FaceContainerType->FaceContainerType, EdgeContainerType->EdgeConts>

TriMesh

vn : int

fn : int

en : int

textures : std::string

normalmaps : std::string

attrn : int

c : Color4b

imark : int

C() : Color4b

C() : Color4b

TriMesh()

~TriMesh()

Mem(in nv : int, in nf : int) : int

MemUsed() : int

MemNeeded() : int

Clear() : void

SimplexNumber() : int

VertexNumber() : int

InitFaceIMark() : void

InitVertexIMark() : void

IMark() : int

IsMarked(in v : ConstVertexPointer) : bool

IsMarked(in f : ConstFacePointer) : bool

Mark(in v : VertexPointer) : void

Mark(in f : FacePointer) : void

UnMarkAll() : void

Volume() : ScalarType

VertContainerType, FaceContainerType, EdgeConts

<<bind>>

Figure A.18: UML class diagram of triangle mesh representation in Meshlab.

93

Appendix A. UML Class diagrams

<<:vector>>

list

<<:vector>>

_vertexVectorCache

<<:map>>

_vertexMapCache

<<:vector>>

_elementVectorCache

<<:map>>

_elementMapCache

_v

[3]

_vs

[3]

<<:vector>>

_vs

GModel

_name : std::string

_fileName : std::string

_visible : char

_octree : Octree

_geo_internals : GEO_Internals

_occ_internals : OCC_Internals

_fm_internals : FM_Internals

_fields : FieldManager

_currentMeshEntity : GEntity

_current : int

regions : GRegion*, GEntityLessThan

faces : GFace*, GEntityLessThan

edges : GEdge*, GEntityLessThan

meshPartitions : int

partitionSize : int

normals : smooth_normals
MVertex

_globalNum : int

_num : int

_index : int

_ge : GEntity

MVertex(in x : double, in y : double, in z : double, inout g...

~MVertex()

getGlobalNumber() : int

resetGlobalNumber() : void

getVisibility() : char

setVisibility(in val : char) : void

getPolynomialOrder() : int

setPolynomialOrder(in order : char) : void

x() : double

y() : double

z() : double

x() : double

y() : double

z() : double

point() : SPoint3

onWhat() : GEntity

setEntity(inout ge : GEntity) : void

getNum() : int

forceNum(in num : int) : void

getIndex() : int

setIndex(in index : int) : void

getParameter(in i : int, inout par : double) : bool

setParameter(in i : int, in par : double) : bool

distance(inout v : MVertex) : double

linearSearch(inout pos : std::set<MVertex*, MVertexLessThanL...

writeMSH(inout fp : FILE, in binary : bool = false, in saveP...

writeVRML(inout fp : FILE, in scalingFactor : double = 1.0) ...

writeUNV(inout fp : FILE, in scalingFactor : double = 1.0) :...

writeVTK(inout fp : FILE, in binary : bool = false, in scali...

writeMESH(inout fp : FILE, in scalingFactor : double = 1.0) ...

writeBDF(inout fp : FILE, in format : int = 0, in scalingFac...

writeDIFF(inout fp : FILE, in binary : bool, in scalingFacto...

MElement

_globalNum : int

_num : int

_partition : short

_visible : char

_isInsideTolerance : double

MEdgeVertex

MEdgeVertex(in x : double, in y : double, in z : double, ino...

~MEdgeVertex()

getParameter(in i : int, inout par : double) : bool

setParameter(in i : int, in par : double) : bool

getLc() : double

MFaceVertex

MFaceVertex(in x : double, in y : double, in z : double, ino...

~MFaceVertex()

getParameter(in i : int, inout par : double) : bool

setParameter(in i : int, in par : double) : bool

MTriangle

_getEdgeVertices(in num : int, inout v : std::vector<MVertex...

_getFaceVertices(inout v : std::vector<MVertex*>) : void

MTriangle(inout v0 : MVertex, inout v1 : MVertex, inout v2 :...

MTriangle(inout v : std::vector<MVertex*>, in num : int = 0,...

~MTriangle()

getDim() : int

gammaShapeMeasure() : double

distoShapeMeasure() : double

getNumVertices() : int

getVertex(in num : int) : MVertex

getVertexMED(in num : int) : MVertex

getOtherVertex(inout v1 : MVertex, inout v2 : MVertex) : MVe...

getNumEdges() : int

getEdge(in num : int) : MEdge

getNumEdgesRep() : int

getEdgeRep(in num : int, inout x : double, inout y : double,...

getEdgeVertices(in num : int, inout v : std::vector<MVertex*...

getNumFaces() : int

getFace(in num : int) : MFace

getNumFacesRep() : int

getFaceRep(in num : int, inout x : double, inout y : double,...

getFaceVertices(in num : int, inout v : std::vector<MVertex*...

getType() : int

getTypeForMSH() : int

getTypeForUNV() : int

getTypeForVTK() : int

getStringForPOS() : char

getStringForBDF() : char

getStringForDIFF() : char

revert() : void

getFunctionSpace(in o : int = -1) : functionSpace

isInside(in u : double, in v : double, in w : double) : bool...

getIntegrationPoints(in pOrder : int, inout npts : int, inou...

circumcenter() : SPoint3

edges_tri(in edge : int, in vert : int) : int

MTriangle6

MTriangle6(inout v0 : MVertex, inout v1 : MVertex, inout v2 ...

MTriangle6(inout v : std::vector<MVertex*>, in num : int = 0...

~MTriangle6()

getPolynomialOrder() : int

getNumVertices() : int

getVertex(in num : int) : MVertex

getVertexUNV(in num : int) : MVertex

getVertexMED(in num : int) : MVertex

getNumEdgeVertices() : int

getNumEdgesRep() : int

getEdgeRep(in num : int, inout x : double, inout y : double,...

getEdgeVertices(in num : int, inout v : std::vector<MVertex*...

getNumFacesRep() : int

getFaceRep(in num : int, inout x : double, inout y : double,...

getFaceVertices(in num : int, inout v : std::vector<MVertex*...

getTypeForMSH() : int

getTypeForUNV() : int

getStringForPOS() : char

getStringForBDF() : char

getStringForDIFF() : char

revert() : void

MTriangleN

_order : char

MTriangleN(inout v0 : MVertex, inout v1 : MVertex, inout v2 ...

MTriangleN(inout v : std::vector<MVertex*>, in order : char,...

~MTriangleN()

getPolynomialOrder() : int

getNumVertices() : int

getVertex(in num : int) : MVertex

getNumFaceVertices() : int

getNumEdgeVertices() : int

getNumEdgesRep() : int

getNumFacesRep() : int

getEdgeRep(in num : int, inout x : double, inout y : double,...

getEdgeVertices(in num : int, inout v : std::vector<MVertex*...

getFaceRep(in num : int, inout x : double, inout y : double,...

getFaceVertices(in num : int, inout v : std::vector<MVertex*...

getTypeForMSH() : int

revert() : void

Figure A.19: UML class diagram of triangle mesh representation in Gmsh library.

94

Appendix A. UML Class diagrams

previous

next

next

previous

neighbors

vertices

ridges

neighbors

outsideset

coplanarset

e[1]

<<struct>>

facetT

furthestdist : coordT

maxoutside : coordT

offset : coordT

normal : coordT

f : <complex type>

center : coordT

visitid : uint

id : uint

nummerge : uint

tricoplanar : flagT

newfacet : flagT

visible : flagT

toporient : flagT

simplicial : flagT

seen : flagT

seen2 : flagT

flipped : flagT

upperdelaunay : flagT

notfurthest : flagT

good : flagT

isarea : flagT

dupridge : flagT

mergeridge : flagT

mergeridge2 : flagT

coplanar : flagT

mergehorizon : flagT

cycledone : flagT

tested : flagT

keepcentrum : flagT

newmerge : flagT

degenerate : flagT

redundant : flagT

<<struct>>

vertexT

point : pointT

visitid : uint

id : uint

seen : flagT

seen2 : flagT

delridge : flagT

deleted : flagT

newlist : flagT

<<struct>>

setT

maxsize : int

<<union>>

setelemT

p : void

i : int

Figure A.20: UML class diagram of triangle mesh representation in Qhull library.

95

Appendix A. UML Class diagrams

Triangle

Triangle()

Triangle(in v1 : Vector3, in v2 : Vector3, in v3 : Vector3)

getArea() : double

getNormal() : Vector3

getCentroid() : Vector3

p1

p2

p3

m_coords

Vector3

Vector3()

Vector3(in x : double, in y : double, in z : double)

Vector3(in coords : Array3)

operator +=(in rhs : Vector3) : Vector3

operator -=(in rhs : Vector3) : Vector3

operator *=(in s : double) : Vector3

operator *(in s : double) : Vector3

operator /=(in s : double) : Vector3

operator /(in s : double) : Vector3

operator -() : Vector3

length() : double

squaredLength() : double

normalize() : void

normalized() : Vector3

getTurnAngle(in cec1 : Vector3, in vec2 : Vector3, in normal...

x() : double

y() : double

z() : double

x() : double

y() : double

z() : double

operator [](in i : uint) : double

operator [](in i : uint) : double

asArray() : double

setCoords(in coords : Array3) : void

setCoords(in x : double, in y : double, in z : double) : voi...

<<typedef>>

Array3

Figure A.21: UML class diagram of triangle mesh representation in CoPP and BRICS MM

library.

<<struct>>

TRIANGLE

TRIANGLE()

TRIANGLE(in v1 : Vector, in v2 : Vector, in v3 : Vector)

~TRIANGLE()

operator [](in i : int) : Vector

operator [](in i : int) : Vector

ComputeNormal() : Vector

v1

v2

v3

<<typedef>>

Vector

Figure A.22: UML class diagram of triangle representation in openrave library.

<<struct>>

TRIMESH

indices : vector<int>

ApplyTransform(in t : Transform) : void

ApplyTransform(in t : TransformMatrix) : void

Append(in mesh : TRIMESH) : void

Append(in mesh : TRIMESH, in trans : Transform) : void

ComputeAABB() : AABB

serialize(inout o : std::ostream, in options : int) : void

<<vector>>

vertices
<<typedef>>

Vector

Figure A.23: UML class diagram of triangle mesh representation in openrave library.

96

Appendix A. UML Class diagrams

<<typedef>>

Vec3

Shape

Shape()

Shape(in sa : Shape, in copyop : CopyOp = CopyOp::SHALLOW_CO...

cloneType() : Object

clone(in : CopyOp) : Object

isSameKindAs(in obj : Object) : bool

libraryName() : char

className() : char

accept(inout : ShapeVisitor) : void

accept(inout : ConstShapeVisitor) : void

~Shape()
Array

IndexArray

TriangleMesh

TriangleMesh()

TriangleMesh(in mesh : TriangleMesh, in copyop : CopyOp = Co...

setVertices(inout vertices : Vec3Array) : void

getVertices() : Vec3Array

getVertices() : Vec3Array

setIndices(inout indices : IndexArray) : void

getIndices() : IndexArray

getIndices() : IndexArray

~TriangleMesh()

<<ref_ptr>>

_indices

<<ref_ptr>>

_vertices
<<typedef>>

Vec3Array

Figure A.24: UML class diagram of triangle mesh representation in OSG library.

Mesh

vertexCount : uint

vertices : double

triangleCount : uint

triangles : uint

normals : double

Mesh(in : void)

Mesh(in vCount : uint, in tCount : uint)

~Mesh(in : void)

Shape

Shape(in : void)

~Shape(in : void)

Figure A.25: UML class diagram of triangle mesh representation in ROS.

97

Appendix A. UML Class diagrams

A.2 Implementation details

A.2.1 Implementation of harmonized data-types

Point3D

Point3D()

Point3D(x : Coordinate, y : Coordinate, z : Coordinate)

Point3D(point : Point3D)

~Point3D()

getX() : Coordinate

getY() : Coordinate

getZ() : Coordinate

setX(x : Coordinate) : void

setY(y : Coordinate) : void

setZ(z : Coordinate) : void

getRawData(pointBuffer : Coordinate) : void

operator +(point : Point3D) : Point3D

operator -(point : Point3D) : Point3D

operator *(scalar : double) : Point3D

operator =(point : Point3D) : Point3D

homogeneousTransformation(transformation : IHomogeneousMatrix44) : void

operator >>(inStream : istream, point : Point3D) : istream

operator <<(outStream : ostream, point : Point3D) : ostream

Point3DDecorator

Point3DDecorator(point : Point3D)

~Point3DDecorator()

getX() : Coordinate

getY() : Coordinate

getZ() : Coordinate

setX(x : Coordinate) : void

setY(y : Coordinate) : void

setZ(z : Coordinate) : void

getRawData(pointBuffer : Coordinate) : void

operator =(point : Point3D) : Point3D

operator +(point : Point3D) : Point3D

operator -(point : Point3D) : Point3D

operator *(scalar : double) : Point3D

homogeneousTransformation(transformation : IHomogeneousMatrix44) : void

operator >>(inStream : istream, point : Point3D) : istream

operator <<(outStream : ostream, point : Point3D) : ostream

decorate(point : Point3D) : void

getPoint() : Point3D

<<typedef>>

Coordinate

ColoredPoint3D

red : byte

green : byte

blue : byte

ColoredPoint3D(point : Point3D)

ColoredPoint3D(point : Point3D, red : byte, green : byte, blue : byte)

ColoredPoint3D(point : ColoredPoint3D)

~ColoredPoint3D()

operator >>(inStream : istream, point : ColoredPoint3D) : istream

operator <<(outStream : ostream, point : ColoredPoint3D) : ostream

point

x

y

z

Figure A.26: UML class diagram of harmonized Cartesion point representation.

98

Appendix A. UML Class diagrams

IHomogeneousMatrix44

IHomogeneousMatrix44()

~IHomogeneousMatrix44()

getRawData() : double

setRawData() : double

operator *(matrix : IHomogeneousMatrix44) : IHomogeneousMatrix44

operator =(matrix : IHomogeneousMatrix44) : IHomogeneousMatrix44

operator <<(outStream : ostream, matrix : IHomogeneousMatrix44) : ostream

HomogeneousMatrix44

matrixElements : int

matrixData : double

HomogeneousMatrix44(r0 : double, r1 : double, r2 : double, r3 : double, r4 : dou...

HomogeneousMatrix44(homogeneousTransformation : Eigen::Transform3d)

~HomogeneousMatrix44()

getRawData() : double

setRawData() : double

operator *(matrix : IHomogeneousMatrix44) : IHomogeneousMatrix44

operator *=(matrix : IHomogeneousMatrix44) : IHomogeneousMatrix44

operator =(matrix : IHomogeneousMatrix44) : IHomogeneousMatrix44

operator <<(outStream : ostream, matrix : IHomogeneousMatrix44) : ostream

Figure A.27: UML class diagram of homogeneous transformation matrix.

PointCloud3D

PointCloud3D()

~PointCloud3D()

addPoint(point : Point3D) : void

getPointCloud() : std::vector<Point3D>

setPointCloud(pointCloud : std::vector<Point3D>) : void

getSize() : uint

storeToPlyFile(filename : std::string) : void

storeToTxtFile(filename : std::string) : void

readFromTxtFile(filename : std::string) : void

operator >>(inStream : istream, pointCloud : PointCloud3D) : istream

operator <<(outStream : ostream, pointCloud : PointCloud3D) : ostream

homogeneousTransformation(transformation : IHomogeneousMatrix44) : void

Point3DpointCloud

<<vector>>

Figure A.28: UML class diagram of harmonized Cartesion point representation.

99

Appendix A. UML Class diagrams

Triangle

Triangle()

Triangle(triangle : Triangle)

Triangle(vertex1 : Point3D, vertex2 : Point3D, vertex3 : Point3D)

~Triangle()

getVertex(vertexIndex : int) : Point3D

setVertex(vertexIndex : int, vertex : Point3D) : void

homogeneousTransformation(transformation : IHomogeneousMatrix44) : void

operator <<(outStream : ostream, triangle : Triangle) : ostream

ITriangleMesh

ITriangleMesh()

~ITriangleMesh()

getSize() : int

getNumberOfVertices() : int

getTriangleVertex(triangleIndex : int, vertexIndex : int) : Point3D

addTriangle(vertex1 : Point3D, vertex2 : Point3D, vertex3 : Point3D) : int

removeTriangle(triangleIndex : int) : void

homogeneousTransformation(transformation : IHomogeneousMatrix44) : void

operator >>(inStream : istream, mesh : ITriangleMesh) : istream

operator <<(outStream : ostream, mesh : ITriangleMesh) : ostream

read(inStream : std::istream) : void

write(outStream : std::ostream) : void

Point3D

TriangleMeshExplicit

TriangleMeshExplicit()

~TriangleMeshExplicit()

getTriangles() : std::vector<Triangle>

setTriangles(triangles : std::vector<Triangle>) : void

getSize() : int

getNumberOfVertices() : int

getTriangleVertex(triangleIndex : int, vertexIndex : int) : Point3D

addTriangle(vertex1 : Point3D, vertex2 : Point3D, vertex3 : Point3D) : int

addTriangle(triangle : Triangle) : int

removeTriangle(triangleIndex : int) : void

homogeneousTransformation(transformation : IHomogeneousMatrix44) : void

read(inStream : std::istream) : void

write(outStream : std::ostream) : void

TriangleMeshImplicit

indices : std::vector<int>

TriangleMeshImplicit()

~TriangleMeshImplicit()

getVertices() : std::vector<Point3D>

setVertices(vertices : std::vector<Point3D>) : void

getIndices() : std::vector<int>

setIndices(indices : std::vector<int>) : void

getSize() : int

getNumberOfVertices() : int

getTriangleVertex(triangleIndex : int, vertexIndex : int) : Point3D

addTriangle(vertex1 : Point3D, vertex2 : Point3D, vertex3 : Point3D) : int

removeTriangle(triangleIndex : int) : void

homogeneousTransformation(transformation : IHomogeneousMatrix44) : void

read(inStream : std::istream) : void

write(outStream : std::ostream) : void <<vector>>

<<vector>>

[3]

triangles

vertices vertices

Figure A.29: UML class diagram of harmonized Cartesion point representation.

100

Appendix A. UML Class diagrams

A.2.2 Implementation of components

IOctreeReductionFilter

IOctreeReductionFilter()

~IOctreeReductionFilter()

reducePointCloud(originalPointCloud : PointCloud3D, resultPointCloud : PointCloud3D) : void

IOctreeSetup

IOctreeSetup()

~IOctreeSetup()

setVoxelSize(voxelSize : double) : void

getVoxelSize() : double

Octree

voxelSize : double

Octree()

~Octree()

reducePointCloud(originalPointCloud : PointCloud3D, resultPointCloud : PointCloud3D) : void

setVoxelSize(voxelSize : double) : void

getVoxelSize() : double

IOctreePartition

IOctreePartition()

~IOctreePartition()

partitionPointCloud(pointCloud : PointCloud3D, pointCloudCells : std::vector <PointCloud>) : void

Figure A.30: UML class diagram of Octree component implementation.

101

Appendix A. UML Class diagrams

IIterativeClosestPoint

IIterativeClosestPoint()

~IIterativeClosestPoint()

match(model : PointCloud3D, data : PointCloud3D, resultTransformation : IHomogeneousMatrix44) : void

IIterativeClosestPointDetailed

IIterativeClosestPointDetailed()

~IIterativeClosestPointDetailed()

setData(data : PointCloud3D) : void

setModel(model : PointCloud3D) : void

getData() : PointCloud3D

getModel() : PointCloud3D

performNextIteration() : double

getLastEstimatedTransformation() : IHomogeneousMatrix44

getAccumulatedTransfomation() : IHomogeneousMatrix44

IPointCorrespondence

IIterativeClosestPointSetup

IIterativeClosestPointSetup()

~IIterativeClosestPointSetup()

getConvergenceThreshold() : double

getMaxIterations() : int

setConvergenceThreshold(convergenceThreshold : double) : void

setMaxIterations(maxIterations : int) : void

setAssigner(assigner : IPointCorrespondence) : void

setEstimator(estimator : IRigidTransformationEstimation) : void

getAssigner() : IPointCorrespondence

getEstimator() : IRigidTransformationEstimation

IRigidTransformationEstimation

assignerestimator

IterativeClosestPoint

maxIterations : int

convergenceThreshold : double

IterativeClosestPoint()

IterativeClosestPoint(assigner : IPointCorrespondence, estimator : IRigidTransformationEstimation, convergenceThreshold : double, maxIterations : int)

~IterativeClosestPoint()

match(model : PointCloud3D, data : PointCloud3D, resultTransformation : IHomogeneousMatrix44) : void

getConvergenceThreshold() : double

getMaxIterations() : int

setConvergenceThreshold(convergenceThreshold : double) : void

setMaxIterations(maxIterations : int) : void

getAssigner() : IPointCorrespondence

getEstimator() : IRigidTransformationEstimation

setAssigner(assigner : IPointCorrespondence) : void

setEstimator(estimator : IRigidTransformationEstimation) : void

setData(data : PointCloud3D) : void

setModel(model : PointCloud3D) : void

getData() : PointCloud3D

getModel() : PointCloud3D

performNextIteration() : double

getLastEstimatedTransformation() : IHomogeneousMatrix44

getAccumulatedTransfomation() : IHomogeneousMatrix44

Figure A.31: UML class diagram for Iterative Closest Point component implementation.

102

Appendix A. UML Class diagrams

IPointCorrespondence

IPointCorrespondence()

~IPointCorrespondence()

createNearestNeighborCorrespondence(pointCloud1 : PointCloud...

INearestPoint3DNeighbor

INearestPoint3DNeighbor()

~INearestPoint3DNeighbor()

setData(data : PointCloud3D) : void

findNearestNeigbor(query : Point3D, k : int) : vector<int>

PointCorrespondenceGenericNN

PointCorrespondenceGenericNN()

PointCorrespondenceGenericNN(nearestNeighborAlgorithm : INea...

~PointCorrespondenceGenericNN()

createNearestNeighborCorrespondence(pointCloud1 : PointCloud...

getNearestNeighborAlgorithm() : INearestNeighbor

setNearestNeighborAlgorithm(nearestNeighborAlgorithm : INear...

PointCorrespondenceKDTree

PointCorrespondenceKDTree()

~PointCorrespondenceKDTree()

createNearestNeighborCorrespondence(pointCloud1 : PointCloud...

nearestNeighborAlgorithm

Figure A.32: UML class diagram for Point Correspondence component implementation.

IRigidTransformationEstimation

IRigidTransformationEstimation()

~IRigidTransformationEstimation()

estimateTransformation(pointPairs : std::vector<CorrespondencePoint3DPair>, resultTransformation : IHomogeneousMatrix44) : double

RigidTransformationEstimationORTHO RigidTransformationEstimationAPXRigidTransformationEstimationSVD

RigidTransformationEstimationHELIXRigidTransformationEstimationQUAT

Figure A.33: UML class diagram for Rigid Transformation Est imation component imple-

mentation.

103

Appendix A. UML Class diagrams

INearestNeighborSetup

dimension : int

maxDistance : double

INearestNeighborSetup()

~INearestNeighborSetup()

getDimension() : int

getMaxDistance() : double

setMaxDistance(maxDistance : double) : void

INearestNeighbor

INearestNeighbor()

~INearestNeighbor()

setData(data : vector< vector<float> >) : void

setData(data : vector< vector<double> >) : void

findNearestNeigbor(query : vector<float>, k : int) : vector<int>

findNearestNeigbor(query : vector<double>, k : int) : vector<int>

INearestPoint3DNeighbor

INearestPoint3DNeighbor()

~INearestPoint3DNeighbor()

setData(data : PointCloud3D) : void

findNearestNeigbor(query : Point3D, k : int) : vector<int>

NearestNeighborFLANN

dataMatrix : float

rows : int

cols : int

parameters : FLANNParameters

index_id : FLANN_INDEX

speedup : float

NearestNeighborFLANN()

~NearestNeighborFLANN()

setData(data : vector< vector<float> >) : void

setData(data : vector< vector<double> >) : void

setData(data : PointCloud3D) : void

findNearestNeigbor(query : vector<float>, k : int) : vector<int>

findNearestNeigbor(query : vector<double>, k : int) : vector<int>

findNearestNeigbor(query : Point3D, k : int) : vector<int>

getParameters() : FLANNParameters

setParameters(p : FLANNParameters) : void

getSpeedup() : float

NearestNeighborANN

k : int

eps : double

maxPts : int

dataPoints : ANNpointArray

queryPoint : ANNpoint

nnIndex : ANNidxArray

distances : ANNdistArray

kdTree : ANNkd_tree

NearestNeighborANN()

~NearestNeighborANN()

setData(data : vector< vector<float> >) : void

setData(data : vector< vector<double> >) : void

setData(data : PointCloud3D) : void

findNearestNeigbor(query : vector<float>, k : int) : vector<int>

findNearestNeigbor(query : vector<double>, k : int) : vector<int>

findNearestNeigbor(query : Point3D, k : int) : vector<int>

NearestNeighborSTANN

nearestNeigborHandle : STANNPoint, STANNDimension, double

resultIndices : long unsigned int

squaredResultDistances : double

k : long

NearestNeighborSTANN()

~NearestNeighborSTANN()

setData(data : vector< vector<float> >) : void

setData(data : vector< vector<double> >) : void

setData(data : PointCloud3D) : void

findNearestNeigbor(query : vector<float>, k : int) : vector<int>

findNearestNeigbor(query : vector<double>, k : int) : vector<int>

findNearestNeigbor(query : Point3D, k : int) : vector<int>

Figure A.34: UML class diagram for k-Nearest Neighbor search component implementa-

tion. Note that all implementations inherit from the three abstract interfaces.

<<enum>>

axis

x : axis

y : axis

z : axis

IDelaunayTriangulation

IDelaunayTriangulation()

~IDelaunayTriangulation()

triangulate(pointCloud : PointCloud3D, mesh : ITriangleMesh, ignore : axis) : void

triangulate(pointCloud : PointCloud3D, tetrahedrons : ITetrahedronSet) : void

DelaunayTriangulationOSG

DelaunayTriangulationOSG()

~DelaunayTriangulationOSG()

triangulate(pointCloud : PointCloud3D, mesh : ITriangleMesh, ignore : axis) : void

Figure A.35: UML class diagram for Delaunay Triangulation component implementation.

104

	ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	1. INTRODUCTION
	1.1 Motivation
	1.2 Context of work
	1.3 Problem statement
	1.4 Thesis Outline

	2. BACKGROUND
	2.1 Terminology
	2.2 Overview of 3D perception and modeling domain
	2.3 3D perception and modeling processing stages
	2.3.1 Depth perception
	2.3.2 Filtering
	2.3.3 Registration
	2.3.4 Segmentation
	2.3.5 Mesh generation
	2.3.6 Visualization

	3. STATE OF THE ART
	3.1 Benchmarking in robotics
	3.2 Algorithms for 3D perception and modeling
	3.3 Public available libraries for 3D perception and modeling

	4. CONCEPT
	4.1 Basic Approach
	4.1.1 Exploration
	4.1.2 Harmonization
	4.1.3 Refactoring
	4.1.4 Integration
	4.1.5 Evaluation

	4.2 Review of 3D perception an modeling elements
	4.3 Harmonization of common data-types
	4.3.1 Cartesian point representation
	4.3.2 Cartesian point cloud representation
	4.3.3 Triangle mesh representation

	4.4 Refactoring and harmonization of common algorithms
	4.4.1 The Octree component
	4.4.2 The Iterative Closest Point component
	4.4.3 The k-Nearest Neighbor search component
	4.4.4 The Delaunay Triangulation component

	5. IMPLEMENTATION
	5.1 Choice of programming language and tools
	5.2 Implementation Overview
	5.3 Common data-types
	5.3.1 Cartesian point representation
	5.3.2 Cartesian point cloud representation
	5.3.3 Triangle mesh representation

	5.4 Common algorithms
	5.4.1 The Octree component
	5.4.2 The Iterative Closest Point component
	5.4.3 The k-Nearest Neighbor search component
	5.4.4 The Delaunay triangulation component

	5.5 Framework integration

	6. EXPERIMENTAL EVALUATION
	6.1 Evaluation environment
	6.2 Performance metrics
	6.3 Performance of Cartesian point data-type
	6.4 Performance of Point Correspondence
	6.5 Performance of Rigid Transformation Estimation
	6.6 Performance of Iterative Closest Point

	7. CONCLUSION
	7.1 Summary
	7.2 Future work

	BIBLIOGRAPHY
	A. UML Class diagrams
	A.1 Data-type representations in existing libraries
	A.1.1 Cartesian point representations in existing libraries
	A.1.2 Cartesian point cloud representations in existing libraries
	A.1.3 Tringle mesh representations in existing libraries

	A.2 Implementation details
	A.2.1 Implementation of harmonized data-types
	A.2.2 Implementation of components

