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ABSTRACT

A robot needs a representation of its environment to realsoatand to interact with it. Different
3D perception and modeling approaches exist to create sueprasentation, but they are not
yet easily comparable. This work tries to identifgst practicealgorithms in the domain of 3D
perception and modeling for robotic applications. The gedb have a collection of refactored
algorithms that are easily measurable and comparable. Hievacthis goal, software engineering
techniques are applied to decompose existing algorithtosatomic elements.

A state-of-the-art survey identifies common data-typesadgarithms for this domain. This
work proposes harmonized data-types and harmonizedanesffor software components. The
components encapsulate the atomic parts of the commonitalgsr Existing implementations
in public available software libraries are refactored t@liement the proposed components. The
software is integrated into one common framework, called@®dR3D library. Benchmarks of the
components are performed with existing data sets. Thesshbrearks are the base for impartial
deduction ofbest practicefor a given task.
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Chapter 1

INTRODUCTION

1.1 Motivation

Autonomous robot systems are complex systems with diff&ieds of hardware and soft-
ware components. A developer, which has to design a robat $pecific task, faces many prob-
lems: What is the right choice of sensors, actuators or thetmalatform? Which algorithms like
navigation, task planning, manipulation or machine leagrstrategies are the most suitable for the
application? Which of them need to be integrated and whi&une be reimplemented? Nowa-
days, robots are typically build from scratch because aegttiblishedobot engineeringr robot
development process missing completely. Aobot development processuld significantly help
the developer and speed up the development time. One impagpect is that the process should
help to get access teest practicechoices for the application, and thus suitable algorithhwsikl
be measurable and comparable.

1.2 Context of work

This work is done in the context of the EuropeagsBPactice_h Robotic§BRICS) project.
The project’s focus lies on identifyingrabot development proces& Model Driven Engineering
(MDE) approach for aobot development process the desired goal. This comprises several
subcomponents: hardware, middleware, drivers, algodthmodels and tools that support the
MDE approach. BRICS tries to identifyest practicesolutions in each of these categories, so a
robot developer might later choose the components in hignlesftware, which are most suitable
for a specific application. This master thesis is about tigergahmic component, to be more
precise:best practicealgorithms in 3D perception and modelfng

1.3 Problem statement

This work addresses the crucial component of 3D perceptimh raodeling for robotic
applications. A robot needs a representation of its enwikamt to reason about what to do next
to accomplish a given task. This representation msaalelof the environment. To get access to
a model the robot needs perception that means the abilitgrisesthe environment. The more
advanced the task of the robot, the more sophisticateditcepgon must be. For example a robot
that should grasp three dimensional (3D) objects like a cup table needs a three dimensional

“The term "modeling” is referred here as a 3D representatfoanoobject, rather than a part odel Driven
Engineering (MDE)
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world model. Different approaches exist, but they are noegsily comparable or exchangeable.
The problemis to identify best practicealgorithms for 3D perception and modeling. That means
to make algorithms interchangeable, comparable and thasurable. The goal of this work is to
provide a framework of refactordaest practicealgorithms for 3D perception and modeling for
robotic applications.

1.4 Thesis Outline

This master thesis is structured as follows:

e Chapter2 clarifies definitions of important terms occurring in thisnkicfollowed by a gen-
eral overview in which the context of the 3D perception andlelimg domain is embedded.
The Chapter closes with algorithmic details of the 3D petioepand modeling domain.

e Chapter3 depicts current efforts in benchmarking of robots and wig/sb difficult to com-
pare different robotic systems. Related work of algoritfiors3D perception and modeling
is presented, followed by a list of public available libesrithat at least partially imple-
ment these algorithms. The libraries are a starting poirteteelop comparable and thus
benchmarkable algorithms that can lead to statements dbstpracticealgorithms for 3D
perception and modeling.

e Chapter4 explains the process of identifyirgest practicealgorithms. First the general
approach is depicted, then it is applied to the domain of 3@gmion and modeling. Re-
quirements for harmonized data-types, software compsraerd harmonized interfaces for
the components are presented.

e Chapter5 shows the implementation of the requirements for harmainilsga-types and the
realization of the components for common algorithms. THensoe is integrated into the
BRICS3D library.

e Chapter6 presents benchmarks of the atomic components to judge hvelffgorithms are
best practicefor 3D perception and modeling. The used test-bed and theumea perfor-
mance metrics are discussed.

e Chapter7 summarized the results of this work and enumerates opeesissu



Chapter 2

BACKGROUND

The Background Chapter will start with definitions of im@ort terms occurring in this work,
followed by a general overview in which the context of the 3@geption and modeling domain
is embedded. The last Section in this Chapter dives a stqmedé#o the algorithmic details of
this domain.

2.1 Terminology

The terminology Section starts with clarification of thentebest practicealgorithms and
the closely related procedure lsénchmarking Then definitions in the field &D perceptiorand
modelingare provided. The terminology faoftware engineeringspects are presented, because
these techniques will be applied to the algorithms in the 8 @ption and modeling domain, to
be able to deduckest practice

Best practice algorithms

Best practiceor sometimes also callegbod practice best in clas®r leading practices a
term that has its origin in the business domain. A suitabfaitien for best practicds:

"Methods and techniques that have consistently shown tesuperior than those
achieved with other means, and which are usedamschmarks to strive for. There
is, howeverno practice that is best for everyone or every situation, and no best
practice remains best for very long as people keep on findettebways of doing
things.” [1]

Applied to 3D perception and modeling algorithms for rob@pplicationspest practice
can be regarded as an algorithm that performs betters tien algorithms, for a specific task.
Depending on the task for a robotic system, the superior strdigorithm might not be the same.
For example a scenario requires a fast generation of a 3DImmastgecting high accuracy of that
model, while another scenario depends on a very detaileceinbdt has more relaxed timing
constraints.Best practicealgorithms might even get outdated, when new algorithmgetform
older approaches. The quoted definition identifies the jplieof abenchmarko compare differ-
ent algorithms.
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The termbenchmark can be defined as "a standard measurement that forms theftrasis
comparison”®] or "a measure ([of] a rival’s product) according to specifstandards in order to
compare it with and improve one’s own producg].[ Applied to the world of robotics this means
with the help of a benchmark it is possible to compare theoperdnce of robots or algorithms.
Although the perspective of a robot as a "product” might becsmmon, the second definition gives
a hint to an intrinsic motivation behind benchmarking: i a system. Another motivation
is to assess an objective measure that allows to chooskbet@r best practicesystem for a
certain application. The measurable quantities for rablatinchmarks are currently a subject of
discussion of its own, see also Secthi.

3D Perception

Perceptionis the process of acquiring knowledge about the environni&griception can be
subdivided into two partssensingandinformation extractiorj4]. Sensing is the task of producing
measurements with different sensors like cameras or lasgerfinders. The outcome of the sens-
ing process is typical raw-data, which can be further preegs$o extract meaningful information.
Coghnitive reasoning on an abstract level is beyond the sobperception.

3D perception means that knowledge in the three dimensional domain isegadh The
goal is to generate a 3D representation of the robots envieoh It is crucial to reason in a 3D
environment, as the robot lives in the real world and intisradth 3D objects and 3D obstacles.[
To acquire 3D measurements, technology is applied that caie\edepth perceptionDifferent
sensors and approaches for depth perception exist. Sorherofare listed in Sectio?.3.1

3D Modeling

3D modelingis the process of creating a 3D model of the environmen3DAmodel is
a three dimensional digital representation of a three d@ioal entity. As autonomous robots
have to reason about their environment, they also need agseaqiation of this environment. The
research field of 3D modeling has its origin in 3D computeipgies and 3D video games. Dif-
ferent ways to represent a model have been developed. Thdyeceategorized into three main
categoriesdense depthsurface basedr volumetricrepresentationg.

Dense depthrepresentations can ldepth imageshat are typically delivered bgepth per-
ceptiondevices, like Time-of-Flight or stereo cameras (cf. Sec@®.]). A depth image stores
the distance information to the front of the captured scarike pixels of the image. For example
displayed as gray-scale image, bright regions appearmeate sensor (depending on the coding
of the depth information). As a depth image only capturesrégoof an 3D environment that
depends on the view point, this is sometimes referred as @&pi@sentation, being more than 2D
but not fully 3D (cf. Chapter 22 of7]]). Depth images can be aggregatedatygered depth images
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3D model
dense depth surface based volumetric
depth image point samples  polygon implicit octree tetraterahedon set
mesh ‘
triangle NURBS
mesh

Figure 2.1: Taxonomy of 3D model representations.

(LDI) that contain multiple snapshots of the same object, takan @ifferent positions, to form a
full 3D model [6].

Surface basedmodels are the most common 3D representations. An objeepissented
by its boundary: the surface. The content of the object isanted. Surface based models fall into
three subcategoriegioint samplespolygon mesheandimplicit representationsPoint samples
approximate a surface by picking some points of the surf@ceuped together, the samples form
a point cloud. Point clouds are possibly the most common representatioohiotics, as many
sensors like laser scanners create surface samples, fopkxarhen a laser beam hits the surface.

Polygon meshesnodel 3D surfaces with a set of 2D polygons. Each area, alkmidacet
that is enclosed by thedgesof the polygon, is a part of the surface. The points of a palyge
calledvertices(singularverte). A popular polygon used for meshes is tHangle. A triangle is a
polygon with the least number of points to create a 2D polydogure2.2depicts the terminology
of the elements of a triangles. The three vertices are coed®a three edges that enclose a facet.
Polygon meshes are a very common in manufacturing, arthitg@nd entertainment industries.
They are the basic primitives for graphic cards.

Theimplicit surface representation tries to describe the surface with mathematical func-
tions: curves for the 2D case and shapes for the 3D chkm-uniform rational basis spline
(NURBS)uses surface patches which are composesplafies A spline is a piecewise constructed
smooth function. NURBS are commonly useddomputer Aided Design (CAD)

Volumetric representations of models usexels A voxel (volume pixel) is the small-
est representable amount of space. A simple volumetrieseptation is a 3D binary grid that
indicates if a cell is occupied or not. This approach is eresly memory inefficient. A better
representation is th@ctree The Octree is a recursive subdivision into eight cubes. i oybes
are neglected and the model results in a tree like structucetmes, representing the volume of
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vertex

edge
vertex

vertex

Figure 2.2: Terminology of a triangle. The three vertices ae connected via three edges that
enclose a facet.

the 3D model. Furthermore, an often used representatiorsés af tetrahedronsA volume is
composed of many tetrahedrons.

Mathematically, tetrahedrons and triangles are relatedho#h aresimplices A k-simplex
is theconvex hullof exactlyk + 1 points. The convex hull can be understood as the boundary of
a point set. A vertex is @-simplex, an edge is &simplex, a triangle is a-simplex and the tetra-
hedron is &3-simplex. When many simplices describe on object, thanaids calledsimplical
complex The triangle set is a simplical complex for 2D surfaces &medset of tetrahedrons is the
simplical complex for 3D volume representatios$. [

The robotic domain is typically only interested in surfacesimes. For grasping or collision
checking the content is irrelevant as only the boundary efdbject, defined by its surface, is
needed. For the remaining parts of this work meshing algost will refer to surface meshes,
rather than volumetric approaches.

Software Engineering

Software Engineeringis a structured and systematic way to develop software. @per-
tant goal is to create maintainable and reusable high gusaftware. Some techniques in software
engineering are the appliance suiftware patternssoftware refactoringdesign ofsoftware com-
ponentsor model-driven engineering

Software patternsare standardized, abstracted solutions to often recupioglems §].
To some extent the patterns drest practicesolutions for software development problems. The
description of a pattern captures the core of the solutiahiacudes the main consequences.
Although, providing abstract solutions, some patternsoafg applicable to object-oriented pro-
gramming languages, as for example class inheritance méetequired.

Software Refactoring means changing the internals of a code without modifyingethe
ternal behavior 10]. This term fits well to this work, as the algorithms shouldrbade easily
comparable without changing the behavior of the algorithm.
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Software componentsare entities that structure software into modules. Eachubeod
should contain elements that somehow belong together. Thieation for software components
is to have elements the can be reused in other applicatiohe.cdmponents communicate via
interfaces. The internal structure is unspecified, thisoimmgetely left to the programmer that
means the implementation could be object-oriented or sbo$ifurther subcomponents. Ideally
a component should be reusable and replaceable by othegrimeptations (even with 3rd party
components)11].

In Model-driven engineering (MDE), the software developer usdemain-specifienod-
els. A model could for example describe architectural orb@hral elements and consist of soft-
ware components. These models are (partially) transfoiintedource code by special generator
tools [12].

Unified Modeling Language (UML) is a standardized way to specify models that describe
certain parts of a software. UML can be regarded agltmain-specifienodel for the domain of
software development. UML has a well known way to visuallgplfy certain aspects of software:
UML diagrams There are different UML diagram types. This work usésssdiagrams which
can represent classes of an object-oriented languagepamgbnentiagrams that depict software
components. Software patterns are typically accompanjedNiL diagrams.

Unfortunately software engineering principles are notwietely used for robotic applica-
tions [L3]. One reason is the difficulty in creating reusable softwaerause of heterogeneous
software and hardware requirements. Another reason ighbaievelopment focus is often on
efficient implementation of algorithms, as (near) realdioapability are a major design criterion
and thus neglecting the reusability of software parts. Waegk will apply some of the techniques
mentioned above to existing algorithms for 3D perceptiod modeling to make them easier to
benchmark and to get easier accessdst practice

2.2 Overview of 3D perception and modeling domain

This section will briefly look into the context of 3D perceptiand modeling that means
which neighboring research domains are there, and how aserthated. 3D perception and
modeling, for robotic applications, has an overlap witheast four other major domaingepth
perception Simultaneous Localization and Mapping (SLAMYject recognitiorand3D modeling
Figure2.3depicts the context of the 3D perception and modeling domain

e Depth perception The depth perception domain tries to measure depth infiloméhat is
important to generate a 3D model of an environment. Diffekamds of sensor technology
is applied, like stereo cameras, Time-of-Flight camerasen scanners or structured light.

7
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Depth
perception

Object

SLAM recognition

3D Modeling

Figure 2.3: Context of 3D perception and modeling domain.

This domain contributes algorithms that can recover deftbrination, for example depth
reconstruction of two images from a stereo camera systerher@igorithms are able to
reduce the noise of the measurements or provide low levehbgrocessing capabilities in
general that might be already embedded into the sensoredevic

e Simultaneous Localization and Mapping (SLAM). SLAMis a robotic research field. Here
the problem is that the robot needs to know where it is, tloeeet needs a representation
of the world. This representation, also call@ép should be generated autonomously by
the robot while it explores the environment. Thus the robathle to navigate in unknown
terrains. The next step is to localize it in the mapapping. If mapping is performed
correctly the position on the map corresponds to the positidhe real world. The problem
of the simultaneous creation of a map and the localizatioit loas formed the terrSLAM
[14, 15].

Although early solutions for SLAM operated with 2Dap representations, recent devel-
opments have lifted this representation to 8@aps Thus the SLAM domain contributes
algorithms needed for 3D perception and modeling tasks.eAs@s are needed to create
themaps the SLAM domain has a natural overlap with the fieldepth perception
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e Object recognition: The problem irobject recognitionis to find objects in a scene that are
known in a database. For example the task is to find a bottla image that is previously
stored in a database. Some algorithms use dedicated featuam image like SIFT16]
or SURF [L7], to uniquely represent objects. These kind of featuresaks®@ used in some
visual SLAM approacheslB]. Other algorithms exploit spatial properties, for exaeil
point clouds they detect doors, door handles, tables ohdasts 19]. Object recognition
approaches need sensors and therefore they are also telt#ttedepth perceptionlomain,
although not all approaches need three dimensional datan &vmedepth perceptioral-
gorithms rely on dedicated features, like SIFT or SURF, torege the depth from motion
[18].

e 3D modeling 3D modeling is the field of representing, generating or aligation of 3D
models as presented in Sectigrl. The main interest groups are typically 3D computer
games, computational geometry, 3D computer animatiorggtatiiarchives (cultural her-
itage) like the digitaMichelangelo Projecf20], virtual reality, or even 3D-TV which is a
recent emerging branch. Algorithms in this domain are abteansform, refine and visual-
ize 3D models.

The 3D modeling domain is related to all other previously tivered fields. Depth per-

ceptionis needed to capture for example cultural heritage, as oresdi before, or stereo
cameras are used for 3D-TV applications. 3D SLAM approadhiesrently use 3D mod-
els in the form of point clouds. Some object recognition teghes store a 3D model in a
database which, in the recognition phase, might be prajente an image from a camera.

3D perception and modeling can bee seen as in between alighieys domains. It uses at
least partially algorithms from these domains. Furtheaiteebout the predominant algorithmic
subareas are explained in the next Sec#dh

2.3 3D perception and modeling processing stages

This section will categorize the important algorithmic atgas for 3D perception and mod-
eling. This work is biased towards 3D perception and modefor mobile manipulation ap-
plications. This has historical reasons, as st practice algorithms for mobile manipulation
planning have been already refactored and integrated intdRECSMM library, by [21]. This
work onbest practicealgorithms for 3D perception and modeling tries to closegap between
the real world and 3D environment models that are needededyntibile manipulation planning
algorithms. As those planners need a triangle set repegmndf the environment, the processing
stages for 3D perception and modeling aim to create the nextjai triangle mesh of the environ-
ment, with sensor data as input. This process has sevegakstas indicated in Figui4: depth
perception filtering, registration segmentationmesh generatioandvisualization
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Please note that Figu4 suggests a@econstruction pipelinas it is commonly seen on
recent approaches like i27], [23] or [19]. However, a 3D perception and modeling task does
not necessarily have to be organized gépeeline The reconstruction process could be a network
that has multipledepth perceptionomodules, multiplenesh generatiostages or multiple models
at different resolutions. For example, a global plannedeeerather rough representation to cope
with delicate structures like tables or chairs while an atist collision avoidance algorithm needs
a very detailed representation. The different 3D modelshiniige acquired or processed with
different frequencies. The processing network could e hidirectional connections, where
for example thedepth perceptiorns influenced by the model, as seen &) Or the amount of
noise detected by a filter has influence on the depth percegévice and adjusts parameters like
for example the capturing frequency or brightness cowadtr cameras.

The insight of possible setups within a processiegvorkin terms of reusability is that this
work does not impose any@peline semantics. The reconstructigipeline scenario is just re-
garded a the simplest possible configuration. This is alspiwfigure2.4the arrows between the
stages are only indicated with dashed lines. The remairfdibisosection describes the different
processing stages in further detail.

algorithms data-types

raw data

Depth perception

3\ 4
J/ |\

\ 4 point cloud
Filtering
| r J
Y
( 3\
Registration
\ r J/
\ 4
4 3\
Segmentation
| r J
Y
( N\

Mesh generation

| r J
\ 4 triangle mesh
4 3\

Visualization
\ J/

Figure 2.4: Overview of 3D perception and modeling processp stages.

2.3.1 Depth perception

For depth perceptiovarious kinds of sensors exist. Laser scanners emit lagend¢hat
are reflected when the beams hit the surface. The travetimg af the light is used to deduce the
distance. Time-of-Flight cameras follow the same prirgifpiut some devices measure the phase
shift of a modulated frequency rather than the traveled.ti®iereo camera systems consists of
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two cameras that are mounted on a fixed baseline. As the hasglknown, distances to corre-
sponding points can be calculated via triangulation. Sedata is often encoded intdepthor
rangeimages. Although theepth perceptioiis a crucial step for 3D perception, it is assumed in
this work that depth images are already given. Algorithmthis domain are typically hardware
dependent, and the benefit of refactoring algorithms ingbhigor might be low. This work will
provide functionality to turn a depth image into a point claepresentation.

For further information about depth sensing technology,rdader may refer to the follow-
ing literature: Chapter 22.1 ir¥], Chapter 4 in #] or Chapter 2 in 25].

2.3.2 Filtering

A filter is an algorithm that is able to process a data streanthis case point cloud data.
Three major filtering techniques are often applied to pdiotids: noise reductionsize reduction
andnormal estimation

Noise reductioriilters try to remedy shortcomings of the sensors measuren@iae reduc-
tion filters sub-sample the input data to get an approximatedrbalier amount of data. The less
input data an algorithms has, the faster the processingdasmal estimatiorfilters are needed to
compute a normal vector for each point in a point cloud. Thenab represents the plane normal
vector of an underlying patch of the surface. Many algorghmequires point clouds with normals
to further process the data. The filtering stage can be redaad optional, but it is a valuable
contribution to create more robust or faster results.

2.3.3 Registration

Registration also sometimes referred amtching is the process of merging captures from
different viewpoints into one global, consistent coorténftame. This is a robotic problem, be-
cause mobile robots move in their environment and thus deg@alperceive the environment from
different perspectives. Some tasks require to integrafgeateived scene captures into one con-
sistent model to reason about it (for example to plan a pathg most prominent algorithm to
solve the registration problem for point clouds is ttezative Closest Point (ICPnethod.

As the ICP will be addressed in later Chapters a brief intetida (cf. [25]) shall be given
here: The initial version of the ICP was introduced Bg|[and [27]. Input data are typically two
point cloudsmodelanddata Other input like polylines, implicit/parametric curvasangle sets
or implicit/parametric surfaces are also possible, budrimally the ICP works on point sets. The
ICP iterates over the following three steps: estahtisimt-to-point correspondencesstimate the
rigid transformationandapply transformatiorio datapoint set (cf. Algorithm2.1). The behavior
is that the algorithm aligns both point sets better to eabkrawith every iteration.

11
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The creation opoint-to-point correspondenceseans that two points from the two differ-
ent input point clouds are regarded as corresponding if e the closest Euclidean distance
to each other. To compute the closest distance a Nearesiidelgpod search is invoked. This is
the computational most expensive part of the ICP, and éiffeapproaches and optimization are
available.

The second step is testimate the rigid transformatiothat is needed to minimize a cost
function which determines the overall error between theesmondences. This error function is
defined as follows:

Two independent sets of points, the model pointidetvith size|M| = N,,, and data point
setD with size]f)] = Ny, are the input. The goal is to find a transformati@t ¢) that minimizes
the following error function26, 27]:

Nm, Nd

ER,t)=> > wi; | — (Rd; +t)|

i=1 j=1

)’ (2.1)

The parametetv; ; is 1 if the i-th point of the model sel/ has a correspondence with
the j-th point from the data point séb, that means both point sets describe the same 3D point.
Otherwise the parameter; ; is 0. To prevent having a huge matrix far; ; the equation can be
further simplified to:

N
BR.6) = = > i — (Rds + ) 22)
N=1

N Ng
WhereasN = > )" sign(w; ;). The correspondence can be now expressed by a tuple
i=1j=1
(mj, d;) for thei-th correspondence.

In the last step of an iteratioR and¢ are applied to thdatapoint cloud. The previous steps
are repeated either until tliata converges to thenode| for example if the error of Equatio.2
falls below a certain threshold, or a defined amount of marinterations is reached. The ICP is
summarized in Algorithn2.1

The ICP has two major disadvantages. First, the initialdiemation between two point
clouds relies on a good guess for correct convergence. Mabsitic systems can resolve this
problem by incorporation of odometric values from the whed&econd, the ICP only converges
to a local minimum, which does not need to be the correct filghment. Especially registration
of data with spacial ambiguities are problematic.

12
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Algorithm 2.1 The ICP algorithm
1: for 7 = 0 to maxzimumlteration do

2. Find correspondencdsn;, d;) between point cloud/ andD.

3:  Estimate the rigid transformatioi’, which is composed of rotatioR and translatiort
that minimizes the error functio®(R,t) in Equation2.2 between the correspondences
(mi, di).

4:  Apply that transformatior’ to point cloudD
5. if error E(R, t) < some threshold then

6: Terminate algorithm.

7. endif

8: end for

2.3.4 Segmentation

Segmentation means a spatial partition of point cloudssaotisets that belong to different
objects. 3D models of special shapes, like boxes, cylindefisalls are often fitted into these
regions to model the perceived objects.

With respect to a mobile manipulation application that rsegttiangle set representation of
an environment this stage can be regarded as optional. Howee segmentation of data might
be helpful to recognize objects that can be grasped, for pbeam

2.3.5 Mesh generation

The goal of themesh generatiostep is to transform a 3D point cloud into a triangle mesh.
Similar terms araneshing, shape recovery, surface recovery, surface racmtion, model re-
trieval, inverse CADor geometric modelingin computer vision). Most of these terms are used
in a broader context that already includes some filteringegrstration steps. The notianesh
generationis used here in a more limited way restricted to the part ofehtdnsformation from
point cloud to triangle mesh.

Many mesh generation algorithms u3elaunay triangulation. Dalaunay triangulationis
a mesh that fulfills théelaunay property The Delaunagmpty circle propertyor 2D triangula-
tions is defined as the circumscribing circle of any triartbkt does not contain any other point of
the point set. For the three dimensional case the circubisgrsphere of a tetrahedron does not
have any internal other points. Triangulations are possibhny dimension and always result in a
partition into simplices of theonvex hullof the vertices. As a consequence, no simplex intersects
any other simplex§].

The result of @elaunaytriangulation is unique, except if more points than theiges for
a simplex areco-circular. In this case more than one validklaunaytriangulations exist. For
example in the 2D case, four points might be on a circumsugibircle of a triangle, or in the 3D

13
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(a) (b)

Figure 2.5: Relation between Delaunay triangulation and Voonoi graph in a plane. (a)
shows the Delaunay triangulation, (b) shows the corresporidg Voronoi graph and (c) shows
the superposition of both.

case, five points might be on the circumscribing sphere.

To compute @elaunaytriangulation for arbitrary dimensions points are typigahserted
incrementally and each time ttigelaunay propertyis updated. To perform this update, all cir-
cles/spheres that contain the new point need to be foundseTimplices are then deleted, as
they violate theDelaunayproperty. New simplices are added that include the new @nvertex.
The number of deletions depends on which point of the inpinsierted, thus the complexity de-
pends on the order of the input data. To balance the inputtdataput points are often selected
randomly, thus the nammndomized incrementallgorithm. The worst case complexity for di-
mensiond is O(n%/?) while the average case@(n log n). For the special case dimensidn= 2
other algorithms exist, likdlipping, plane sweepr divide and conquebut without significant
reduction in complexity 28].

Delaunay triangulations have an interesting dual relatigntoVoronoigraphs. Thé&/oronoi
graph create¥oronoicells with polygons, such that each point on the cell edges dot have a
smaller distance to any other point of the input point sete Wéronoidiagrams result from con-
necting all centers of the circumscribing circles/spherfdage Delaunay triangulation. Figuges®
depicts the relationship betwe&elaunaytriangulations and the correspondixgronoidiagram
for the 2D caseZ9].

2.3.6 Visualization

Visualization or rendering is the process of displaying the 3D models. This involves a
transformation from the models into a 2D image, which can isplayed on a monitor. This
task is often performed by specialized hardwageaphic adapters The graphic adapters offer a

®Images taken frorhttp://de.wikipedia.org/wiki/Delaunay-Triangulation
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software interface to render the models that consist ofipvierelements like points, lines or poly-
gons. One standardized interfaceOpenGL which allows operating system independent access
th the graphic adapter8().

Robotic applications do not necessarily need to visualieegenerated models, but visu-
alization can serve as a development or debug tool to visuadpect intermediate results or the
output of certain algorithms. Actually, algorithms for deming do not need to be refactored be-

cause standardized interfaces already exist.

The next Chapter will review related work of algorithms of thresented processing stages.
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Chapter 3

STATE OF THE ART

This Chapter will start with current efforts in benchmauikiaf robots and why it is so difficult
to compare different robotic systems. As this work focuseshe 3D perception and modeling,
related work in this field will be also presented, followed doyist of public available libraries
that at least partially implement the presented algorithiftsese libraries are a starting point to
develop comparable and thus benchmarkable algorithmsc#matead to statements abdugst
practicealgorithms for 3D perception and modeling.

3.1 Benchmarking in robotics

Performance metrics, benchmark databases and widely tadcepmparison methodolo-
gies are very important instruments, for industry as wellaascience. Robotics research does
not have a well elaborated methodology for benchmarks apdrgwrents yet. This makes it hard
to compare different approaches, especially in differeaharios or environment87].

Related work is paying more and more attention to benchmarkind evaluation32].
Benchmarking in robotics can be roughly categorized intopgdownand abottom-upa per-
spective B3]. Top-downmeans the robot is investigated as a whole system or a "blaxck Bhis
view can be further subdivided into robodmpetitions andsystem benchmarks Competitions
as benchmarks like RoboCup have the advantage that it isse@&syluate if a robot can achieve
a given task. As a disadvantage, intensive evaluation weih nobots require detailed protocols
of experimentations’ to allow for the experiments to be etpd. System benchmarks measure
quantities like functional time, memory consumption orwecy for example in pose estimation.

A more fine-grained benchmarking is achieved ibhaitom-upfashion. Here each single
sub-entity is individually evaluated. Sub-entities caralgorithms, devices, atomic components
or complex/composite components. A special problem and @3ele is the fact that no common
software interfaces are yet available for these enti8&f [Thus harmonized interfaces would be a
valuable contribution to enable component-based bendtingarMost benchmarking efforts have
been concentrating on evaluation of a robotic system as gemtather than on a component level.

Competitions and challenges
Robot competitions and challengdsave become a very poplar way to compare robotic
systems. The performance metrics for each competition eaeén as standardized as every par-
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ticipating team has to obey the same set of rules. The Rob®Bupwell-known competition with
its various subcategories like RoboCup Rescue or RoboCur@HThe US Defense Advanced
Research Projects Agency hosted the DARPA Grand challen2@04 and 2005 and the URBAN
challengé in 2007. These competitions benchmarked the capabilifiemmanned autonomous
cars. Similar to this, the ELROBactivities have been initiated by the German FGAN instituti
However, they have a less competitive focus and serve rath@idemonstration of state-of-the-art
robotic technology.

Simulation platforms

Simulation platformgplay an important role in benchmarking, as they allow to qenfex-
periments of robotic systems or algorithm with the absericereal robot. Experiments can be
repeated easier without a hardware platform, and can beatematized. The ability to be able
to evaluate alternatives (e.g. different algorithms) migithe design phase is another advantage of
simulation tools 81]. Although simulation is a helpful tool for benchmarkingcénnot address
all real world problems and it cannot replace system bendkenaith hardware platforms. One
of the most popular robot simulators (especially in edwrgtis the Player/Stagdramework. It
has its focus on 2D navigation, but in combination with Gar¥8D simulation is possible. The
USARSIim!! is a 3D simulation developed for the RoboCup rescue conipetiEven Microsoft
has developed a commercial tool for robotic simulation: f#éoft Robotic Studid?. Recent
research efforts have started to integrate robot specifictifonality into the Blender simulation
toolkit 13. More specific robotic subareas like simulations for a Visgavoing tasks have been
addressed with the Java-based Visual Servo Simulator$&)¥

Public shared data sets

The robotic community has started to provjalgblic shared data set§ he Radish (Robotic
Data Set Repository}® and the Rawseeds projeéprovide data sets (developed by the Politec-
nico of Milano) for SLAM applications. Recent efforts hads@maddressed data sets for visual
SLAMY’. Other robotic subareas established data sets for maengng like the UCI Machine

Shttp://www.robocup.org/
"http://www.darpa.mil/grandchallenge/index.asp
8http://www.elrob2006.0rg/
Shttp://playerstage.sourceforge.net/

http://playerstage.sourceforge.net/gazebo/gazebo.ht ml
http://sourceforge.net/projects/usarsim/
2http://msdn.microsoft.com/en-us/robotics/default.as px

Bhttp://wiki.blender.org/index.php/Robotics:Index
http://www.robot.uji.es/research/projects/javiss

Bhttp://radish.sourceforge.net

Bhttp://rawseeds.elet.polimi.itthome
http://babel.isa.uma.es/mrpt/index.php/Paper:Malaga _Dataset_2009
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Learning repository*® or the PASCAL Collection'® for visual object recognition. In the field
of motion planning the Parasol Lab at A&M University of Tex@mous for the alpha puzzle)
20 or the MOVIE Project (motion planning in virtual environms)! made public benchmarks
available. Many publications in the field of mesh generatitilize datasets from the Stanford 3D
Scanning Repositor§? This repository also includes the famous "Stanford Bunny”.

Specialized data sets for surface reconstruction areablaf®, as well as data se®é for
3D segmentation with human labeled reference data.

Performance metrics

Definition of performance metricss a crucial task to be able to perform benchmarking,
as it forms the basis of comparison. Metrics are very diffitoldefine (as they have a multi
dimensional nature), but can be categorized st utility andreliability. Costmeasures the
efficiency orintrinsic quantity as entitled in 34], of a system of or an algorithm. Common
guantities are computational time, memory consumptioofilprg in the sense of how much time
has been spend in which functions, amount of communicatioenergy consumptionUtility
measures the quality of the outcome of a task or an algoritRor. example the accuracy of a
pose estimation algorithm can be compared against manwsurements. Theeliability gives
information about the failure-success rate of a given tdskw often a robot can successfully
plan a path to a given goal could be such a scenario. Some &&fop performance metrics for
SLAM applications can be found ir81]. Here the measured quantities are the time required to
reach a goal pose and the accuracy between final and desakdage. B5] defines performance
metrics for evaluation navigation of mobile robot. The NI@Jational Institute of Standards and
Technology) is developing performance metfegor mobile robots in realistic environments, but
these are not yet commonly accepted methodologies by tlaicatbmminity. The University
of Zaragoza focuses on metrics for obstacle avoidanceitigm in theirAutomatic Evaluation
Framework[33].

Conference tracks and research coordination

Dedicatedconference trackhave been established like tRerformance Metrics for Intel-
ligent Systems (PerMISyorkshop?® which was held for the first time in 2000, or workshops on
benchmarks on other well-known international eveli®S’'06, IROS'07, RSS’08, IROS)08

Bhttp://mlearn.ics.uci.edu/MLRepository.html

http://www.pascal-network.org/challenges/VOC/databa ses.html
2http://parasol-www.cs.tamu.edu/groups/amatogroup/be nchmarks/mp/
Zhttp://www.cs.uu.nl/centers/give/movie/description. php
Zhttp://graphics.stanford.edu/data/3Dscanrep/
Bhttp:/iwvww-sop.inria.friprisme/manifestations/ECG02 /SurfReconsTestbed.html

Z4http:/ww-rech.telecom-lillel.eu/3dsegbenchmark/
Bhttp://www.isd.mel.nist.gov/projects/USAR/
Lhttp:/www.isd.mel.nist.gov/research_areas/research _engineering/Performance_Metrics/past_wks
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A broader view on benchmarking in robotics are providedrdsearch coordinationni-
tiatives that have been established to push standardizezhiverks for robotics, like thRoSta
27 project, theAutonomy Levels For Unmanned Systems (ALRW&Ect?8, or theEURONNet-
work 2% with its subgroups, specialized in manipulation and gragspinotion planning, networked
robotics, and visual servoing. TiEEJRON GEM (Good Experimental Methodology) Special In-
terest Grouphas published a document entitled "General Guidelines édrdics Papers Involving
Experiments” B6] with benchmark recommendations for the following domaiBsAM, Mobile
Robots Motion Control, Obstacle Avoidance, Grasping, &iservoing and Autonomy/Cognitive
Robotics.

Trends

Current robotic papers with a benchmarking focus, followtaia tends. Typically, the
purpose of the experimental evaluation can been categante four motivations 37):

e The first motivation has just the intention to demonstrate fomething works, regardless
how many attempts have been necessary to achieve a cedain ta

e The second wants to show that an algorithm or a system pesfbatier than some other
algorithm or systemhorse race papér

e The third tries to get insight on a certain behavior or limits
e The last motivation is a mixed version of the previous ones.

Especially papers that are dominated by the first motivatiben do not follow well elaborated
methodologies, which makes it hard to compare different@aghes.

Difficulties

Some commodifficultiesin comparison between different robots or algorithms drism
the substantial differences in the used software or hael{@8t. This makes it hard or impossible
to reproduce the presented results. The pure publicatioespiits in papers does not make an
algorithm comparable. This lack of comparability slows dokesearch progress and prevents
easy evaluation of thiest practicealgorithms.

[34] remark that it is difficult to perform time-consuming expeents and denotes a weak
awareness of the important role of experiments in the rola#ivelopment process. In many pa-
perstuningparameter of algorithms are not presented in enough detaproduce an experiment.
Furthermore algorithms often exploit certain assumptibas are hidden and not made explicit to

2'http:/iwww.robot-standards.eu/
Bhttp://www.isd.mel.nist.gov/projects/autonomy_level s/
Zhttp://www.euron.org/activities/lbenchmarks/index.ht ml
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the reader. An issue often neglected is the problem of growutid which is only partially solved
(for example in simulation)3§].

One major difficulty is to ensunepeatability of an experiment. If this is given, the exper-
iment can be verified independently by other research groBpside a detailed documentation
including all parameters and assumptions, all occurrednaties should be addressed. This does
not only foster the honesty of presented results, it alsemiily reveals new issues with the
proposed approach/algorithm/system which are worth thvéurstudy. A solid documentation is
supposed to contain the number of trials needed to corrpettiprm a certain task or to reach a
certain goal. Otherwise it remains unclear if the result aaseved by chance.

Benchmarking a complex system like robot and ensuring tap#ity is a difficult task, but
an interesting parallel can be drawn to the scientific fieliology. Here the subject of study (e.g.
human body) is also a highly complex system, thus clinicatqmols and strict guidelines have
been developed to produce reliable and comparable re8@2ts Another way to deal with the
complexity of robots is to benchmark on different levelse3@ levels can be either functional for
example cognition, perception or control. Or these levalslze on different stages of complexity
from a single algorithms to a complete system that meandipeaiking either in dottom-upor a
top-downfashion. To relief the difficulties in robotic benchmarkiagumber of recommendations
has been suggested.

Recommendations

Somerecommendationemphasize stronger focus on elaborated methodologieserie
ments, like the proposed ones in the GEM guidelir&}. [These guidelines started being adopted
to subfields for example in the SLAM domain lik89] or [40]. To produce comparable results, the
experiments must be well documented. Some ways to compiéeeedi algorithms are proposed
by [34] and [37]:

1. Use the same source-code. This is not always possibletfasrsumight not be willing or
are not allowed to distribute the code. Even if the authoesvélling to share their code
they might not have it any more or they cannot reproduce thsiore that was used for
the experiments. A solid backup and versioning strategyelery software development
alleviates the latter issues.

2. Re-implement code by descriptions in papers. This iscdiffifor various reasons: first
this might be a very time consuming process and sometimg®iten not possible because
of hidden assumptions or undocumented parameter settifigas the description of all
parameters and assumption should be as complete as possible

3. Compare the results with those listed in previous putitina. This is the easiest, but cer-
tainly the weakest approach as the comparability for exanimgbrocessing time on different
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hardware is questionable. If the used systems would be bear&led with a performance
benchmark (e.g. drystone/whetstoffe LINPACK®3!, etc), this would give information
about the used test-bed. To make the published result morparable, they could be nor-
malized with these performance benchmarks. One examplsiing mormalized results is
shown in the DIAMCS Traveling Salesman Problem Challetfgevhere all new produced
results are measured relatively against existing oneshwddiows for normalization.

Beside the pure comparison it is important for a benchmgrgiper to explain and justify
the presented results. That means it should always be triedplain why something performs
better than something else.

To conclude this section, benchmarking in robotics is vitagjet access tbest practice
components in robotics, because it forms the basis of cdegrar Systematic comparison of
robotic systems is an emerging research field, as indicategtious kinds of current research
efforts like competitions and challenges, simulationfplas, public shared data sets, definition
of common performance metrics, dedicated conferencedraesearch coordination initiatives.
Establishment of good methodologies and easy comparaklét is a difficult task in robotics,
because of the substantial difference in hardware or softwé&specially benchmarking on a
component based level has no standardized way of compadasdrarmonized software interfaces
are non existing. This also holds true for algorithms in tbmdin of 3D perception and modeling.

3.2 Algorithms for 3D perception and modeling

This Section reviews related work in the subfields of the 3z@gtion and modeling do-
main, presented in Secti¢h3 The focus of the survey is on the registration and the mesarge
ation process, but filtering and segmentation methods aoebaiefly discussed.

Filtering

A filter is an algorithm that is able to process a data streanhis case point cloud data.
For 3D perception and modeling, there are three major figeteéchniques for point cloudaise
reduction size reductiorandnormal estimation

A noise reductionfilter tries to cope with noisy measurements from a depthgugicn de-
vice. To reduce "salt and pepper noisef]] uses anedian filterthat takes seven index neighbors
in a laser scan into account. A source for this noise is if arl@gam partially hits an edge and
is reflected by two surfaces42] uses smoothing techniques for point clouds based on dstilma

nttp:/iww.netlib.org/benchmark/
Shttp:/iww.netlib.org/linpack/
32http://www.research.att.com/ ~dsj/chtsp
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normals and a robust hyperplane projection.

The size reductionfilter is a possibility to improve the computational time fam algo-
rithms. The less input an algorithms has, the faster it i® @ttreedecomposition is the de-facto
standard to reduce point cloud da@b]. It uses a recursive subdivision of cubes, until a dis-
cretization threshold is reached. The input data is appratéd by the center of the cells4]]
use astandard reductiorilter to replace dense grouped points by their mean valués filter in-
corporates laser scanner characteristics that have a rense depresentation the nearer an object
is to the source of a leaser heams. FHEKY ICPby [43] takes a subset of points in the point
cloud for matching process. The selection strategy usaeseptative points that are taken from
a hierarchically clustering.

A filter for normal estimation calculates normals of for the points in a point cloud, such
that the normals represent the plane normal of a underlyaghpof the surface. It is needed for
various algorithms like for registration method#], for segmentation]9] and for mesh genera-
tion algorithms like #5], [46] or [47]. The approach of48] approximates the normal by a surface
that is formed by the:-Nearest Neighborhood of a query point. After a Principahfponent
Analysis (PCA), the vector with smallest eigenvalue sea®she estimated normal49] uses
k-Nearest Neighborhood in combination with plane fitting.r®oobust fitting methods have been
proposed by 19], which use a MLESAC method, inspired by the approach56f,[to estimate
the normals. $1] use a least square fitting approach applied toktidearest Neighborhood. The
authors conclude that the accuracy of the normal estimatsimg a total least square approach
depends on the noise in the point cloud, the curvature of tidenlying surface, the density and
distribution of the points and the neighborhood dize

Registration

In the registration process, scene captures from differiewtpoints are merged into one
common and consistent coordinate frame. This survey corates on registration of static envi-
ronments, that means deformable or articulated objectsaraken into account. Registration of
point clouds can be performed either iglabal or alocal fashion.

Global strategies for registration involve genetic algorithnke [[52], or evolutionary com-
putation approache$d]. As these registration methods are computational experthiey are
uncommon for applications in the robotics domain, as (nesi}time capabilities are important.
A recent developmentHSM3D (Hough Scan Matched in 3[D54], uses the Hough transform
for a global registration. As comprehensive experiment® mot been performed yet, it remains
unclear how competitive this solution is compared to othéstimg approaches. Therefore, most
efforts have been spend total registration techniques.

The most prominenbcal registration algorithm is thierative Closest Point (ICP). The
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original ICP version was invented b2] and [27]. Since then various improvements have been
made that mostly address tberrespondence problenf finding corresponding point pairs in two
point clouds and thegid transformation estimatioproblem. Both problems are the atomic ele-
ments the ICP (cf. Algorithn2.1step 2 and 3 in Sectio2.3.3.

The research efforts in finding thpwint-to-point correspondenceshave addressed either
improvements in theobustnes®r thecomputationakcomplexity.

Approaches to increagebustnessthat means that the point-to-point relations are correctly
calculated, typically enhance the spacial information pbant by additional information like in-
tensity 5], color [56] or point normals44]. The calculation of distinctive features in point clouds
to deliver an approximate initial alignment is applied By][and [58]. Recent efforts developed
thePoint Feature Histograms (PFH)9] which is demonstrated irlP] The PFH is an informative
pose-invariant local feature, which represents the uypiterisurface model properties of a point.
The resulting distinctive feature descriptor bases on langelation of thek-Nearest Neighbor-
hood expressed with a Darboux frame in combination with thelifean distance. An improved
version calledrast Point Feature Histograms (FPFH)as been presented b§(Q]. The authors
conclude that the Euclidean distance information has ontyn@r influence on the expressiveness
on the descriptor, and thus can be neglectdgll] improves robustness for the correspondence
problem, by computing a rough initial transformation guesth an Extended Gaussian Image
(EGI) and a rotational Fourier function.

Various improvements that addressmputational complexity for the ICP have been pro-
posed by §2]. As computation of a point-correspondence typically iiies a Nearest Neighbor
search, all improvements of the more gendrdllearest Neighborssearch problem can help to
speed up the ICP algorithm. The goal is to fasten up the exgessarch through the solution
space to find the closest entities to a search query. A naluéa has a complexity ab(n?), as
every point is compared to every other point in a cloud.

A widely used solution to reduce complexity irNearest Neighbors problems the is usage
of k-d trees Possibilities for optimization of k-d trees are the diffet splitting and merging rules.
[25] describes that splits performed at the longest axis of tietglouds, which ensure compact
volumes, are the most promising policy to yield an optimikeditree for the ICP, with a reduced
complexity toO(kn log n). Further improvements of the k-d tree for the ICP is thehedk-d
tree [63]. It starts searches in following iterations at the leavethe tree. This advantage can
only be gained if a Nearest Neighbor search is invoked sktiares, as it is the case for the ICP.
Despite the processing time improvements, the memory copison is slightly higher. The k-d
tree works best for low dimensional data, as it is the cas8iopoint clouds.

A k-Nearest Neighbors search algorithm for higher dimensiassbeen proposed b§4].

It is an approximated search wiBalanced Box-Decomposition Trees (BD-Trebs} require less
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operations than searching a regular k-d tree. The impleatientis also known a&NN library.
[25] showed that the k-d tree slightly outperforms the BD-treedimension three.

The use ofmultiple randomized k-d tredsas been proposed bg4] and [66]. For high
search space dimensions it tends to be faster than a sirthteck-: p7] present thespill tree for
Nearest Neighbor search, though thedomized k-d approadk faster and less memory intensive.

The concept ofierarchical k-meanss used by §8] in their vocabulary tree approach. Sim-
ilar to this, [69] present a novel improvement of themeans clusteringlgorithms by exploiting
priority queue based search instead of depth first searchy a@lso propose thELANN library
that automatically detects the best suitable algorithmo Variants are selected as the result of
minimized cost function of the parameters: eith@rarchical k-mean®r multiple random k-d
trees Their parameter selection is inspired M0] and [71]. However, the presented results are
only performed with high dimensional data sets.

[72] present theSTANNIibrary. The implemented algorithm tries to exploit pagtiila-
tion technigues to get a performance speedupkfblearest Neighbors search on multi-core and
multi-processor hardware architectures. The algorithsesan thez or Morton ordering that
means the data is sorted according to this, before seartiteigNearest Neighbors is performed.
The construction of this ordering is reduced to a bit-wismparison to further gain performance
improvements. The results where performed on differerdvaare architectures with slightly dif-
ferent setups (number of threads). The proposed algoridems to outperform th&NN library,
on appropriate hardware 73] uses theCUDA framework? to accelerate the Nearest Neighbor
search on a Nvidia graphics adapter. The authors’ expetavstiow that the GPY version is88
times faster on their test-bed than the k-d tree based stagjueersion. [f4] also exploits GPU
acceleration for construction of k-d trees.

Note that some of the approaches above are general solufohsNearest Neighbors
searches and can be used beyond the scope of the ICP algorfthene are methods that ad-
dress computational complexity, which are dedicated todael fior the matching processes with
ICP. For example one approach is to exploit semantic infiondike walls, floors or ceilings, as
seen in ¥5]. Results show that computational time can be uglté faster. [6] presents a concept
of a parallel ICP calleglCP where the correspondences are calculated in distributedena/ 7]
combined arplCP implementation based on tf@penMP® technology with acachedk-d tree.
The author was able to exploit hardware specific charatitsriand strongly coupled algorithm
internals to speed up the registration process.

Along with the improvements for computational complexttye computation of thegid
transformation estimation is an important step for the ICP algorithm: As depicted 2§j,[four

33Compute Unified Device Architecture. Software framewornkgfarallel computing on Nvidia graphic adapters.

34Graphics Processing Unit. This is the equivalent to a CPtistembedded on a graphics adapter. It is specialized
on 3D rendering.

%Cross platform programming interface to create parabeliapplications.

24



Chapter 3. STATE OF THE ART

closed-formvariants exist. Each algorithm tries to estimate a transébion that minimizes the
cost function in Equatio@.2. The first variant is &ingular Value Decomposition (SVDbased so-
lution that is directly derived from th@R, ¢t) representation of the transformatiof8]. The second
variant exploits orthonormal properties of the rotationtniman combination with areigensytem
[79]. The third version uses @anit quaternionin combination with computation afigensystem
[80]. The forth closed form solution variant incorporatedual quaternionrepresentationgl].
The authors of 2] have compared the four solutions. They conclude that glhrithms have
about the same accuracy with respect to stability and n@ity. d

Beside the closed form solutiongpproximatedestimation approaches exist. One method
is based orelical motionproposed by83] and applied by 19]. It uses instantaneous kinematics
that means it uses a point-to-surface, rather than a poipdint metric. A possible disadvantage
is that the method only works reliably for small displaceisenf the point clouds. Z5] denotes
that this algorithms will take more iterations, as it is apm@ximation. The author also contributes
an approximated rigid transformation estimation baseslorearized rotation

Although the ICP can be regarded as the de-facto standaredistration, other approaches
can solve the registration problenB4] just use the poses, deuced from their visual localization
system, to transform the scenes data into one common catediame.

A recent development is the probabilistiormal Distributions Transform (NDTBY]. It
uses combinations of normal distributions, rather thaglsipoints in a cloud. Each distribution
describes the probability to find a part of the surface at asiptgn space, thus resulting in a
smooth representation of a point cloud. Standard numesigi@nization techniques are applied
to compute the registration. As a grid structure is usedyraoy suffers from discretization, but a
triliniear interpolation can increase accuracy with thkesaf performance loss in computational
time. A comparison of ICP and ND®B{] shows that the pure NDT is slightly faster than ICP and
the convergence seems to be better. But ICP behaves moietabdel with respect to noise in the
initial alignment. The triliniar NDT, with a higher accurgds slower than the ICP.

Segmentation

The segmentation process tries to partition the scene nirddedets that belong to different
objects. Often 3D models of special shapes, like boxesnagis or balls are fitted into these
regions to model the perceived objects. Common segmentetieria arenormalsof the points
in a point cloud 2. [19] perform a segmentation of a kitchen-like environment. yTakso use
normals to classify regions and later fitting of cuboid ptiweis to represent dashboards. Model
fitting is also performed by23], as they try to detect buildings in a reconstruction predeslarge
environments. §6] use a sampling technique to find basic shapes like plantisdeys, cones and
tori in a point cloud.

[87] segment trees in an outdoor environments, to use them lale $eatures for naviga-
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tion. [88] use range images for segmentation, in combination witbrciofformation, for their
autonomous exploration application.

The segmentation approach &9 first performs a decomposition of space into regular
cubes, then it tries to find planes with the use RANSAC priecifinally a refinement step with
a region growing strategy is applied. Further segmentatiethods base on edgeX]], curvature
estimates91] or smoothness constraintdF].

Mesh generation

Mesh generation techniques that are able to create a sumnfesie, can be roughly catego-
rized into two predominant directions. The first usegplicit surfacesand the second relies on
Delaunay triangulationresulting in a polygonal mesh representation of the sarfac

Pioneering work in the field amplicit surface modelingwas done by49]. Tangent planes
are fitted into local neighborhoods, then a marching culgrighm is used to compute the com-
plete surface.93] exploit the medial axis of the point set to improve impligitrface generation. It
shows good results with reconstruction of geometrical dempbjects. §4] propose a multi level
partition approach, where the space is partitioned with etne® and the local surface in a cell is
approximated with a quadratic function. A wighting functiblends the local patches together.

The approach of46] and [47] uses theRadial Basis Function (RBFR3s implicit function
for splines. It creates the surface with a smoothing filten&kthat can cope inherently with noisy
data sets. §9] propose a method that first segments the space with an Qoteeemaller cells,
similar to [94], and then a plane is fitted in the points of each cell. Fintily planes of the cells
are merged into one coherent surface. This approach isreesigr robotic indoor applications
and has thus a focus on fast reconstructid®d] Fapture the same idea of this approach, for an
autonomous outdoor exploration application.

Some algorithms neegktimated normalsin the point cloud, for example tHeoisson re-
constructionmethod by #5]. Unlike approaches witlRadial Basis Function (RBF)t considers
the whole point cloud at once. The generated output is a $nmovature, even in presence of
noise in the data sets. Thdgebraic Point Set surfaces (APS&yorithm P5] uses marching
cubes in combination with a robust projection step, finalibg local fitting of spheresRobust
Implicit Moving Least Squares (RIML$6] is similar to APSS but it is able to better preserve
sharp features on the surface.

Many approaches for surface mesh generation are based @ethenay triangulation.
[97] contributes fundamentals for mesh generation algorithyrenalyzing the properties for com-
mon geometric representations, including partitions \tlign Delaunay criterion. The author in-
troduces the strategy to label tetrahedrons ingide and outsidesimplices. This categorization
allows to deduce the surface of an object. T@RRUSTalgorithm P8] uses Voronoi and Delau-
nay structures to create a surface mesh. But it has to pedqgrast-processing step, where point
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normals have to be estimated. TB®OCONE[99] method is a theoretical and practical improve-
ment of CRUST because it does not need to estimate norn&BCONEexploits the labeling the
strategy as presented b97]. CRUSTandCOCONEdo not producevatertightsurface meshes.
A watertight surface means that the boundary of an object is the closutteeadbject. In other
words it has no holes in the mesh. But as tradevedtertight meshes might approximate the
surface less wellPowerCRUST 100 produceswatertightsurfaces. It is based on a power dia-
gram, rather then tetrahedrons. During its processingistais additional vertices (that satisfy
the power distance criteria), which leads to a higher mensonsumption. The smoothing and
reconstruction might be computationally expensitightCOCONH101] reliefs the burden of the
extra points compared tBowerCRUSTFirst it runs theCOCONEalgorithm, then it refines the
output by peeling off the asutsidelabeled simplices. The result isnmatertightsurface. Further
improvements have been made with respect to noisy pointslaith theRobustCOCONEIgo-
rithm [102] that is provable more robust to small errors andEigenCRUST 103 algorithm that
can better handle noisy data.

The well knowna-shapes algorithm bylp4] is also based on the Delaunay triangulation,
which is further refined by only including some simplicestthanform to thea criterion. All
simplices that intersect some sphere that does not inclugipaints of the point cloud are carved
away. The radius of the sphere is the square@lue. Thex-shape algorithm is most suitable for
uniform sampled point clouds.

Recent developments exploit further information than thesppoint clouds. Théro-
FORMAapproach 24] uses a single camera only, while a user has to rotate antpbjbich will
be modeled. First a Delaunay tetrahedralization is cdied|ahen triangles are probabilistically
carved away based on the visibility. Finally textures armdealto the surface.

Labatut et al. 05 use camera images to create a first rough shape approximatted
visual hull Afterwards the Dalaunay tetrahedra are labeled as empmigaupied, with respect to
thevisual hull The result is a triangle mesh of the surface.

Other approaches that are independent of Delaunay triatigus have been proposed.
[106] presents the ball-pivoting algorithm. It is a region grogistrategy with a pivoting ball
that can reconstruct a triangle mesh out of a point cloudjistefrom a seed triangle. The Frontal
Algorithm by [107], inspired by [L0§], calculates special points, and then the mesh is generated
according to a rule set. An interesting contribution is therkvof [109], as they developed an
approach to measure how similar different meshes are. $hpsssibly a valuable contribution
to compare the output of different mesh generation algmsthto deduce thbest practiceap-
proaches.
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3.3 Public available libraries for 3D perception and modelng

This section surveys existing software libraries that afated to the 3D perception and
modeling domain, biased towards the application in a mabigmipulation task. A library was
selected for further investigation if one or more of thedwling requirements can be met:

e The library supports algorithms in the 3D perception and eliad domain. That means
it can offer functionality fordepth perception, filtering, registration, segmentatiomgsh
generationor visualization

e The library supports data-types that are essential fordihisain.

e The library is a potential user of the output data-types. Ws library survey is biased
towards mobile manipulation tasks, a library that can usegimerated models for motion
planning, collision checking, etc. is a good candidate figestigating the used data-types.
This is motivated by the harmonization idea that shall foste reuse of software in different
contexts. In the mentioned mobile manipulation applicatiee context would shift from the
3D perception and modeling domain to the mobile maniputatiomain, but the data-types
should remain the same.

Further motivation for selection is public availability, the sense of open source. A closed
source library, as it is intrinsic by definition, cannot bedstigated, reused, refactored and finally
re-published as open source software. A more relaxed mmeint is the platform independence
of the operating system. All libraries are implemented i€€¥ as this is the predominant pro-
gramming language for computational expensive algoritfioma the 3D perception and modeling
or even the robotics domain. The libraries are roughly @adevith respect to the processing steps
(cf. Figure2.4).

6DSLAM

The 6D Simultaneous Localization and Mapping (6DSLA#ary3® implements methods
to solve the SLAM problem with six degrees of freedom that misa a 3D position and 3D
orientation. The library is based on the work 28] and was chosen because of the implementation
of various ICP variants including a cachdB]and a parallel k-d tree as an efficient way to address
the correspondence problem.

MRPT

The Mobile Robot Programming Toolkit (MRP%)is a library that allows to create appli-
cations for robotic tasks. Therefore it comprises fundtliy for obstacle avoidance, SLAM or
motion planning. With an implementation of the MonoSLAWS] algorithm it is able to perform

*http://slam6d.sourceforge.net/
37http://babel.isa.uma.es/mrpt/index.php/Main_Page
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depth perception with a single camera only. The MRPT libasp includes an implementation
of ICP, which forms the main reason for selection.

IVT

The Integrating Vision Toolkit (IVT® is a library with a focus on computer vision. It
supports algorithms for stereo reconstruction, blob featletection like SIFT and it has an ICP
implementation. Especially the latter one is the motivafior selection.

FAIR

The Fraunhofer Autonomous Intelligent Robotics Library (F¥Rwvas initially developed
by the Fraunhofer-Institut fur Intelligente Analyse- undormationssysteme (IAIS) as a software
package for th&/olksBot[110] research project. The library supports many filtering atbms,
has an ICP implementation and offers drivers for depth peiae like a laser scanner or Time-of-
Flight camera interfaces. The presence of the previoushtioreed algorithms which are specifi-
cally designed for robotics are the main reason why thisiipis included into the survey.

ROS

The Robot Operating System (RG%js a complete environment for robotic applications,
rather than a traditional software library. It offers a mi@dare in the sense of a network of
distributed computers that appears to the user as one cwlsystem 111]. So calledROS nodes
communicate to each other viaessageandservices The formats of these messages are defined
in special text files, and can be seen as a standardizedyge&sinh the ROS environment. ROS
has a set of tools that make the programming easier, for deaimgrosmakeool is able to resolve
dependencies to other ROS modules. The build process isllesdo automatically transfers the
messagelefinitions into source code.

The algorithms and functionality can be found in differegmpasitories, which results in a
huge amount of functionality. Software is organizegpactkageswhich are grouped thematically
into stacks For depth perception for exampldaser pipelineis offered that is able to assemble
point clouds. Different filtering techniques like normatis®tion, ICP for the registration and
several segmentation algorithms are available. But tisgyeet) limited mesh generation function-
ality. As ROS hastacksfor mobile manipulation planning algorithms it also serass potential
user of triangle meshes.

The ROS software is not fully platform independent, as ityaslpports Linux derivates
and Mac OS X. Windows is not natively supported, but the ugder build system uses the
platform independentMakebuild system, thus there are no conceptual barriers to pertdde
to Windows.

Bhttp://ivt.sourceforge.net/
3http://sourceforge.net/projects/openvolksbot/
“Ohttp://www.ros.org/wiki/
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ROS is currently one of the most important open source pijer robotics, so the se-
lection for investigation is obvious. Please note that tivestigated version is v0.7. As ROS is
a rapidly changing and evolving project, some of the previmentioned statements might get
obsolete.

VTK

The Visualization Tool Kit (VTK3, developed by Kitware In¢?, is a software for 2D and
3D data processing and visualization. It has its main agfitin in biomedical imaging, like
for example visualization of regions of the brain. The ligrhas implementations for polygon
reductions, implicit modeling and Delaunay triangulatidhis selected here because it supports
mesh generation algorithms.

ITK

As extension to VTK thdnsight Segmentation and Registration Toolkit (IT&3upports
registration and segmentation algorithms for images. QAtfh the tool kit uses images as data-
types, most algorithms allows-dimensional data as input. As it implements the registraéind
segmentation stages it is chosen as a suitable library éa3Ehperception and modeling domain.

Meshlab/VGC

Meshlat#* is a program for manipulation and interactive editing of 3bdels. It is based
on the core library for mesh processi§3C*. The VGC library is developed by the Visual
Computing LaB® of the ISTI - institute of the Italian National Research ColinMeshlab has
implementations for mesh cleaning, reduction re-meshingsh generation and registration by
the ICP algorithm.

Although segmentation techniques are limited to non-aatanprocedures that means user
interaction is required, the numerous supported datastepe rich functionality with respect to
meshing and the presence of registration functionalitgl teghe selection of Meshlab/VGC.

CGAL

The Computational Geometry Algorithms Library (CGAL)s one of most important open
source projects for algorithms in the computational geoyraidmain. Thus it supports algorithms
for 2D and 3D triangulations, including Dalaunay triandgigla and a-shapes, Poisson surface
reconstruction, mesh simplification, mesh subdivisiorm;nra estimation and many more. As

“http://www.vtk.org/

“2Kitware Inc. also develops tH@Makebuild system.
Shttp://www.itk.org/
“http://meshlab.sourceforge.net/
“http://iveg.sourceforge.net/index.php/Main_Page
“Shttp://veg.isti.cnr.it/joomla/index.php
“Thttp:/lwww.cgal.org/
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this library serves a rich functionality for mesh genenatiibis a reasonable candidate for further
investigation within this work.

Gmsh

GmsH?® is a modeling tool with graphical user interaction. lts mpimpose is to easily
manually create 3D meshes. To assist the user it offers sderinfy techniques like the Octree
reduction or meshing algorithms like Delauny triangulati®eside the filtering and registration
capabilities this tool was chosen, because it implememisugkinds of data-types for 3D models.

Qhull

The Qhulf? library implements thejuick hulP® algorithm for generation of a convex hull
of a point set. It has meshing algorithms for Voronoi digraansl Delaunay triangulation. This
and the fact that it is already iterated into the BRIEI# library motivates the consideration of
this library.

OpenSceneGraph

The OpenSceneGraph (0S8 )project is a powerful library for 3D model visualization. It
is essentially an object-oriented wrapper for the platfimaependenOpenGLinterface. OSG
has the concept of acenegraphthat means data is stored in a hierarchically manner by a tree
structure. The nodes store either 3D data, which are théedoaeodes(stands for Gemetry
Node), or references to child nodes. With this approach it is jpdesso arrange geometries. For
example in a kitchen-like environment a cup, a table or a @i could be each captured by
a different node, whereas the root note represents theekitelmvironment. Even if the same
geometry like for a dish needs to be applied several timesd#ta that describes the geometry,
does not need to be duplicated as the encapsulating nod# lmeuéferenced multiple times, but
with different pose informationl[12]. Theses abilities are certainly useful for the robotic dam

OSG was chosen for this work, because of the features meutiabove, the good sup-
port for different operating systems, and because it isadiresuccessfully integrated into the
BRICS.MM library.

CoPP/BRICS.MM

The Components for Path Planning (CoPRrary®? is a framework for mobile manipula-
tion planning algorithms, initially developed b$43. This library is a potential user of the output

“Bhttp://www.geuz.org/gmsh/

“http:/iwww.ghull.org/

*Owhat the quick sort is for sorting problems, is the quick tatlconvex hull generation.
Shttp://www.openscenegraph.org/projects/osg
S2http://sourceforge.net/projects/copp/
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data from the 3D perception and modeling domain. The reosetsd 3D objects and environ-
ments could serve as input for the planning facilities of BEdParts of the CoPP library have been
refactored or reused by the BRIOW®M library. Both libraries share the same data-type fomtria
gle mesh representation. Please note that BRMD&is not yet available as open source software
therefore it is not listed as a separate entry in this surveljt will be made public in the near
future.

Openrave

Openrave® is similar to CoPP or BRICS/M. It is a simulation framework for mobile
manipulation algorithms. As for CoPP and BRIGSJ, Openrave might be a potential user of
3D models, encoded as a triangle meshes for planners aicolitheckers.

KDL

TheKinematics and Dynamics Library (KD is a library to model rigid body kinematic
chain representation and calculation, and thus is mor¢erkl® manipulation rather than 3D
perception and modeling. KDL is a part of ti@roco$® software component framework for
robotic tasks. The motivation for selection is that KDL isohetic library that heavily deals with
3D points and frame transformations. It is worth to look, hberlibrary represent basic data-types
like 3D points.

ANN

The Approximated Nearest Neighborhood (ARN)brary is a well known library fork-
Nearest Neighbor search, developed 64]][ It focuses on efficient high-dimensionatNearest
Neighbor search tasks. The Nearest Neighbor search is a aoiysed sub-algorithm for many
algorithms, like for example normal estimation or as solutior the correspondence problem in
the ICP algorithm (cf. Algorithn2.1, line 2). ANN is chosen for two reasons: first it implements
a state-of-the-art solution fdr-Nearest Neighbor search and second it often serves asmeéer
for comparison for more recent approaches, as for exampsjror in [69).

FLANN

TheFast Library for Approximate Nearest Neighbors (FLARNS a recently developed so-
lution by [69] for the k-Nearest Neighbor search. It has implementations for fdbigal k-means
or multiple random k-d trees. The FLANN library has a rematkdeature: it automatically de-
tects the best suitable search algorithm. This is intergsts the library has to use metrics to

3http://openrave.programmingvision.com/index.php/Mai n_Page
http:/iwww.orocos.org/kdl

Shttp://www.orocos.org/

*8http://www.cs.umd.edu/ ~mount/ANN/

Shttp://people.cs.ubc.ca/ ~mariusm/index.php/FLANN/FLANN
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determine which algorithm fits best. This has a strong syngrghe concept of identifying what
is best practiceby measuring the performance of algorithms.

STANN

The Simple, Thread-safe Approximate Nearest Neighbor (STANiK)ary for k-Nearest
Neighbor search addressed the computational complexitfi®fproblem by exploiting parallel
computation with multiple threads. This library is includa this survey as it implements an
efficient solution fork-Nearest Neighbor search on modern computer hardwaresthads to have
more and more parallels computing facilities.

Comparison table

The following comparison table (cf. TabBl) summarizes all libraries and indicates which
stage(s) of the 3D perception and modeling stages they guggwere is an additional column to
clarify which version is used. This is important as the pnéseé libraries might have changes in
the future and some facts or statements about them mightbgetate. There are also columns
to show if a library was developed with a robotic context imdhior if it might serve as a "user”
of the used data-types of the 3D perception and modeling mlonRlease note that there is no
single library that has all processing stages for 3D peige@nd modeling domain implemented.
The presented libraries will serve as a foundation to findnosiized data-types and interfaces for
reusable and measurable software modules. By benchmaitkisg modules thbest practice
algorithms for 3D perception and modeling shall be idertifie

%Bhttp://sites.google.com/a/compgeom.com/stann/
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Table 3.1: Summary of public available libraries and their contribution to the 3D perception and modeling domain.

Library Version Depth Filtering | Registration| Segment-|  Mesh Visual- | Potential| Robotic Notes
perception ation generation| ization user library
6DSLAM v1.0 v v v - - v - v
MRPT v0.7.1 v - v - - v - v
VT v1.3.5 v - v - - * - - *=only 2D
Fair rev4 v v v -* - v - v *=only 2D
ROS v0.7 v v v - v v v
VTK V5.4.2 - v - - v - -
ITK v3.16.0 - v v - - - -
Meshlab vi.2.1 - v v - v v - -
CGAL v3.4.0 - v - - v - - - * = usesgeomview
which is only
available for Linux
Gmsh V2.4.2 - v - - v v - -
Qhull rev444 - - - - v - - already integrated
into BRICSMM
CoPP/BRICSMM || rev444 - - - - - v v v user of triangle mesh
openrave ? - - - - - v v v user of triangle mesh
0SG v2.8.2 - - - - v v - - hasscenegrapltoncept
KDL v1.0.0 - - - - - - v v user of 3D point
ANN v1.1.1 - - - - - - - - k-NN Search
FLANN v1.2 - - - - - - - - k-NN Search
STANN v0.71a - - - - - - - - k-NN Search

19V 3HL 40 31v1S ‘€ 4adeyd



Chapter 4

CONCEPT

In this Chapter the process of identifyilbgst practicealgorithms is explained. First the general
approach is depicted, then it is applied to the domain of 3guion and modeling.

4.1 Basic Approach

The presented approach is inspired by the work2d}.[ The process of identifyindpest
practice algorithms can be categorized into different phases. Taerdive stepsExploration
Harmonization Refactoring Integration and Evaluation The goal of this process is to have a
framework of software components that allows to replacenat@lements to easily create a set
of benchmarks that enables to compare and judge the algaritithese benchmarks are the base
for impartial deduction obest practicefor a given task. Summarized in one sentence: "Software
engineering principles will be applied to existing alglnits to make them easier to compare”.

4.1.1 Exploration

In the Exploration phase, knowledge about the algorithmic domain has to beiracqu
Without a solid understanding of the field, decompositiomlgbrithms into atomic and reusable
parts would be impossible. To gather information about thmain astate-of-the-art literature
survey has to be conducted. The results of the survey for algoritiom3D perception and mod-
eling can found in SectioB.2

As the goal of this approach is to refactor existing algongha survey aboutate-of-the-
art software libraries that implement relevant algorithms has to be performed.fained libraries
form the basis of analysis and refactoring of common dgtedyand common algorithms. Note
that this approach is limited to open-source public avégldibraries. If predominant algorithms
are not available as source code, algorithms might have teitmglemented by their description
in the literature, as long as the description is expressimigh and no hidden assumptions are
unspecified. SectioB.3 lists recent libraries that contribute to the 3D percepton modeling
domain.

4.1.2 Harmonization

The Harmonizationphase tries to find harmonized data-types and interfaceatonic
elements. It can be further subdivided into the three falhoysteps:
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1. ldentifycommon data-types Identify the commonly used data-types, then investigate h
they are represented in existing libraries. The attribatesfunctionality that is commonly
used by existing libraries will form the requirements foe tharmonized data-type. These
requirement will have to be met in thefactoringandintegrationstep. That means it must
be implemented. The harmonized data-types will be reusethéoharmonized interfaces
for algorithms. Requirements for harmonized data-typesded for 3D perception and
modeling applications are presented in Sectidh

2. Identify black-boxes This is the step of de-modularizing algorithms into atoelEments.
The knowledge how they are decomposed comes fronEgptoration phase. The most
common modules shall be found and represented as stand mlothales. In this work
these modules are represented as UML software compongmadia. The design choices
should be driven with openness and flexibility in mind. Smet#.4 shows the most common
black-boxes for 3D perception and modeling.

3. ldentify commoninterfaces The atomic elements identified in the previous step need to
communicate to other atomic elements. To get access to aamnpone has to use a set
of interfaces. These interfaces should be harmonized teumable. One important aspect
here is that different clients need different interfaces. é&xample a potential user just needs
the very basic interface that is most convenient to use, mther user needs to know about
more internal details of an algorithms. In this case différaterfaces should be offered.
Harmonized interfaces for algorithms of the 3D perceptiad eodeling domain can be
found in Sectiort.4.

All algorithms and data-types are designed with a potensal of in mind, like for exam-
ple a mobile manipulation planning library that needs a 3Ddet@f the environment to create
paths or trajectories for the hardware platform. To fosfgrmess, flexibility and reusability of
the refactored algorithms, a modularization is aspireth waspect to the principlegSoordination
Configuration Computation and Communication(4C9 [114, 115 116]. The aspect ofCom-
putation describes the implemented behavior, in this case an digoritom the 3D perception
and modeling domain. Th@onfigurationdefines whichComputationsare performed that means
which algorithms or sub-algorithms are actually used twesal certain problemCommunication
describes how and what tl@@mputatiorunits communicate with each other. Typically data-types
are the entities which are communicated between algorit@usrdinationcan be seen on a more
abstract level as it specifies wh@ommunicatiormust take place. Applied to the 3D perception
and modeling domain that could mean that a particular dlyoris only invoked in specified sit-
uations. For example a robot does not need to have have @racdel for grasping a cup while it
has not yet reached the kitchen, where the cup is located.
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The process of modularization, decoupling and abstrat¢tingore general interfaces cer-
tainly involves trade-offs between usability or geneyaind highly coupled or optimized algo-
rithms. But as the intention is to finskst practicealgorithms the decoupling has a higher priority
over highly optimized algorithms. However, in a robot deyghent process an optimization step
might follow after the best practice algorithms have bedprmeined for a specific application.

4.1.3 Refactoring

The Refactoringstep can be characterized filjing black boxes with life. That means
the desired behavior for an algorithm must be defined by implging it. One possible solution
is to create a wrapper or adapt®t fo an algorithm from an existing library, which are already
known from theExplorationphase. If this is not possible, the behavior must be conlpletén-
plemented. The outcome of tiRefactoringphase for 3D perception and modeling is presented in
Chapters.

4.1.4 Integration

In preparation of benchmarking the implemented algorithtingy need to béntegrated
into a test-bed This test-bed might be a real robot, a simulation frameveor& software frame-
work that can prepare data sets to be used as input for a banchmhe goal is to embed the
algorithms into an environment that allows to get accedsesi practice Although the efforts to
integrate algorithms to existing frameworks or libraries gypically time consuming, they give
insights about how well the harmonized data-types andfatdes cooperate with existing code.
From a developers point of view thiefactoringand Integrationdetermine the main work during
software development. Integration of the 3D perceptionrandeling algorithms is performed, in
the form of a library calledRICS3D, which contains the refactored algorithms and capatslitie
to use data sets for benchmarks. Details aboulrttegrationare shown in Sectiob. Section6.1
gives further information about the used test-bed.

4.1.5 Evaluation

The final step is thé&valuationor benchmarking of the refactored and harmonized algo-
rithms. These benchmarks can be performed on a real robibtinve simulation framework or
with recorded or artificial data sets. Details about the w@dlogy of benchmarking in robotics
is currently a research subject on its own, as mentionedétid®e3.1 As the BRICS project will
make the refactored algorithms public, the code can be wspbtlucecomparablebenchmarks,
as new algorithms can be integrated into the BREISlibrary and compared to previous results.
Also the problem ofepeatabilitycan be relieved as everyone can download the code and re-run
the benchmarks. An initial set of benchmarks for 3D peroepénd modeling, with data sets, is
presented in Chapté:
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4.2 Review of 3D perception an modeling elements

The domain of 3D perception and modeling can be subdividexsaveral subcategories
(cf. 2.3): depth perception, filtering, registration, segmentatioresh generatiomandvisualiza-
tion. Arranged as a reconstruction pipeline, it can transfornp8Dt clouds into triangle meshes.
All algorithms have to work on the same data-types and thegdf is beneficial to have harmo-
nized data-types for Cartesian point clouds and trianglshe® The harmonized data-types shall
enable reusability in other robotic software projects lliaklorithms work on the same data repre-
sentation, the algorithms are better comparable. Anotheefit is that different libraries, working
on harmonized data-types, are easier to integrate to eheh as no data conversions have to be
performed.

This work identifies common algorithms for the different geesing stage®epth percep-
tion algorithms are not refactored within this work, as thesertigms depend on the underlying
hardware technology. Several common algorithms existariitiering stage: normal estimation,
noise reduction and Octree filtering. The latter one is oftniraportance, as it also serves as a
method to partition the space, which is required by some mgsdigorithms. Thus it is further
investigated in this work. Theegistrationstage is dominated by the ICP algorithm. Therefore,
the ICP will be refactored in this work and decomposed into-algorithms. Thesegmentation
stage is left for future work, as this step is regarded a®optly in a surface reconstruction task
for mobile manipulation tasks. Many mesh generation algors rely on Delaunay triangulation
and this is why is regarded as atomic algorith¥isualizationfunctionality does not need to be
refactored because standardized interfaces already exist

A general algorithm that does not fall in one of the abovegies, is thé:-Nearest Neigh-
bors search algorithm. It is used Hijtering, registration segmentatiorand mesh generation
algorithms. Thek-Nearest Neighbors search is an atomic algorithmic comptone

The remainder of this Chapter will present the common dgias and algorithms in further
detail.

4.3 Harmonization of common data-types

The 3D perception and modeling domain with bias toward nealénipulation applications
has three major data-types:

e TheCartesian pointas a representation of a surface sample or a distinct é&attine three
dimensional space.

e Cartesian point cloudas collection of Cartesian points. This representatiaften used in
3D perception and modeling approaches, as it is a naturatavepresent aggregated laser
range data.
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Triangle meshas an approximation of a surface. Most polygonal mesh génaralgo-
rithms create triangle meshekl[7], especially as many use the Delaunay triangulation. Tri-
angle meshes are also one of the most common representatiaudlision checkers113).
And even for mesh compression methods, triangle meshehangrédominant data-type

[118.

The following section will investigate each of these datges.

4.3.1 Cartesian point representation

A minimalistic implementation of a Cartesian point for tardimensions at least has a

representation of the, y and =z coordinates. The investigated libraries are those thatgily
work with points. In this case the libraries witkgistrationcapabilities and KDL in the role of a
potential user library.

Representation in existing libraries

6DSLAM: The point representation in the 6DSLAM library is reducedtte very basic
functionality. Its main purpose is to work with the ICP algiom. The primitive used
data-type for ther, y andz coordinates islouble (cf. FigureA.1). The point class has func-
tionality for input and output streaming and allows to applyjomogeneous transformation
to modify the position of a point.

MRPT: MRPT uses an inheritance hierarchy (cf. Figar8) to represent points. This hier-
archy intermixes points and poses as the generalizationotli 5 a class named
CPoseOr Poi nt. The coordinates are encoded with the primitive tgpable. The class
provides basic vector functionality. Beside this claserehs also dight weightversion of
a point, calledrPoi nt 3D. Probably to have a more convenient version, as it servegas i
in the constructor or a more efficient way store the infororati

IVT : In the IVT points are treated as a vector with three eleméftsFigureA.3). The
coordinate data-type is representedflat and is aggregated in a struct. Basic matrix
operation functionality is decoupled and implemented ie@asate class.

FAIR: In the FAIR library a Cartesian point is implemented in a @ienstruct with three
double values (cf. FiguréA.4). It contains a pointer to a struct with additional inforiat

like color, intensity, etc. The representation of coortlsais realized withdouble. The

functionality vector algebra is encoded in the point cloodtainer (cf. FigureA.12). The

usage of the point struct is optimized towards the ICP aligari

ROS: In ROS data-types are typically defined in message fitasdfile extension). These
message definitions are translated while compilation intoce code, header files respec-
tively. ThePoint32.msglefines a Cartesian point:
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# This contains the position of a point in free space(with 32t
of precision).
# It is recommeded to use Point wherever possible instead of
Point32.
#
# This recommendation is to promote interoperability.
5 || #
# This message is designed to take up less space when sending
# lots of points at once, as in the case of a PointCloud.
fl oat 32 x
w|float32 y
float32 z

Listing 4.1: ROS message definition for a Cartesian point.

The generated code (cf. Figufe5) results in a representation with thrdleat values.
Further functionality comprises streaming in the senseith@an be serialized to be sent
to anothernodeover a network. Though the point message serves as commefaod
within ROS, the Cartesian point representation in somegek (e.g. "Gmapping "or "con-
vex . decomposition”) might have other internal representatiwhich need to be converted
to or from the message data-type.

e ITK: The ITK uses a C++ template for a Cartesian point (cf. Figu®. The parameters,
dimension and the underlying type need to be defined by a dithisadata structure. As
ITK is a non-robotic library, but one that provides algonmith for n-dimensional problems,
it does not maintain point representation for different elisions. Functionality for vector
processing like addition, subtraction and test for equalie provided.

e Meshlab: Similar to ITK, Meshlab uses a C++ template (cf. Figéx&’). But only the
primitive types for ther, y and z coordinates can be defined. The dimension is cannot
be changed within the template. The implementation is diég@non the template-based
header libraryEiger?® for Matrix computations.

e KDL : Although KDL does not directly address the 3D perceptiod arodeling domain,
there might be robotic applications that have to cope witth bkinematic issues and per-
ception tasks. So why should they not be able to use or ead#yface with a common
point representation? KDL stores the coordinates in aryafalouble values (cf. Fig-
ure A.8). Data is accessible via according getter and setter methoDL supports frame
transformations and basic vector operations.

Shttp://eigen.tuxfamily.org/index.php?title=Main_Pag e
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Harmonized representation in BRICS

The harmonized Cartesian point representation in BRIES to capture what is common
in the previous discussed point representation. Mostridgause a representation with simple X,
y, and z variables, especially those that use the pointspas far the ICP algorithms in a robotic
context. The predominant primitive data-typedisuble, but the harmonized version should have
some flexibility to switch tofloat, as this is less memory intensive and potentially fasterhen t
same hardware platforms. For example this consideratiafi iisterest for (industry) PCs with
32hit processors, as there is the possibility to switch titpat representation that better fits to
32bit processors. This design choice in a robot developisegpically done once for a specific
system, so it is reasonable to configure this during comioile and not dynamically.

Basic matrix operation functionality is commonly used agntite investigated libraries, as
the Cartesian point also serves as vector of dimensiorthlige. Thus a harmonized point should
support simple vector algebra as addition, subtractionnamitiplication with a scalar. An impor-
tant feature is to implement multiplication with a matrig,énable homogeneous transformation,
to rotate and translate a point. Although streaming sugporbt regarded as a commonly avail-
able feature, it is convenient to have it. It allows to eadilynp the output to relief debugging or
logging activities, and it makes conversions to other paptesentations simpler.

A harmonized data-type must preserve flexibility to futuxeeasion. A possible extensions
of a point could be color information, (like red, green andebthannels), estimated normals,
weights, probabilities, flags is a point is (in)valid or atiea vector descriptor for distinctive prop-
erties (like SIFT for images), to name some. It is possiblienfglement this via class inheritance,
but with growing requirements the inheritance hierarchyitdnave a combinatorial explosion of
possible combinations. To overcome this problemdbeoratorsoftware pattern will be applied
[9]. This allows to wrap a point with another point skin. Thearuappearance is still a point but
the inner representation has additional information. Aaptadvantage of this technique is that
new information can be added dynamically, just by addinglaradecoration layer.

The representation of the investigated libraries and thelting requirements for a harmo-

nized representation are summarized in Table To represent a scene of an environment, single
Cartesian points are often grouped into point clouds to@fiprate a surface.
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Table 4.1: Comparison table for Cartesian point representtion in existing libraries and
requirements for BRICS.

Library Simple Primitive Used | Supports | Stream- | Additional Robotic Notes
X,y,Z repre- | data-type for matrix ing information | library
sentation ICP | operations| support | (e.g. color)
6DSLAM v double v v v - v
MRPT - double v v - - v uses point hierarchy;
point cloud uses
another internal
representation
VT v float v - - - -

FAIR v double v -* - v v * = matrix
functionality in point
cloud class encoded

ROS v float v - v - v generated from

messagédile
ITK B arbitrary* v v - - - * = uses C++
templates for type and
dimension
Meshlab - arbitrary* v - - - - * = use C++ templates|
for type; depends on
Eigenlibrary
KDL v double - v - - v Depends ortigen
library
Require- v double v v v v v Decorator pattern for
ments for and float additional information
BRICS

4.3.2 Cartesian point cloud representation

The Cartesian point cloud is a set of Cartesian points. Ttireensional point clouds are
already a 3D model of the world, as the points can be seen gdesaof the perceived surfaces. A
point cloud representation at least has to store a set ofgopdihe same libraries as in the Cartesion
point 3D harmonization are investigated again, exceptferKDL representation, which is not
intended to be used in a point cloud context.

Representation in existing libraries

e 6DSLAM: The point clouds are encapsulated iS@an class (cf. FigureA.9). This al-
ready gives a strong semantic on the underling depth péscefgichnology: a laser range
scanner. Th&can class stores the points in a simple vector of points and hastarface
for point reduction filtering by a k-d tree. The reduced peiate then stored in a separate
double array, to exploit optimized data access in later ggsiog steps. Functionality for

homogeneous transformation and streaming are supported.

e MRPT: As MRPT typically uses point clouds for navigation and SLAdplications, the
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point clouds are represented maps The mapsare structured in an abstract inheritance
hierarchy, to allow a simple point representation to be arged for example with color
annotated points (cf. Figur.10). An interesting observation is that the Cartesian point
representation, as presented in the preceding sectioat isused. Instead each coordinate
is stored in its own vector ofloat values. Similar to the 6DSLAM library, MRPT offers an
interface to a k-d tree construction in the map represemtakiut in addition an interface for
point registration is available. The result is a point cloedresentation that is designed for
robotic navigation tasks, but not for reuse in other coste$treaming functionality in the
sense of loading and saving from and to files is supported.

e IVT: The IVT library does not have a dedicated class for poinid$o To represent sets of
points for example in the interface for the ICP algorithmha tlassCl CP (cf. FigureA.11),
a pointer to an array of points is used. As no information altoel size of the data array is
addressed directly, this might lead to access of data tlwaitisf bounds of the array.

e FAIR: In the FAIR library point clouds are stored in a vector ofrgers to points that
is embedded in th€Car t esi anPoi nt Cl oud class (cf. FigureA.12). Functionality for
homogeneous transformation of point clouds, size redudind streaming is available in
the point cloud representation.

e ROS: Similar to the point representation (cf. Listifg2), ROS defines point clouds in
messages. The corresponding mess$agetCloud.msgs listed as follows:

#This message holds a collection of 3d points, plus optional
additional information about each point.

#Each Point32 should be interpreted as a 3d point in the frame
given in the header

Header header

s||geonmetry nsgs/Point32[] points #Array of 3d points

Channel Fl oat 32[] channel s #Each channel should have the same
number of elements as points array, and the data in each
channel should correspond 1:1 with each point

Listing 4.2: ROS message definition for a Cartesian point clad.

The generated source code (cf. Figérd3) for C++ contains a vector of points. As this
class is a RO$nessagét supports streaming capabilities. Further functiogdiite frame
transformations is shifted to other classes.

e ITK : ITK has aPoi nt Set class to represent Cartasion point clouds (cf. Figudet). As
for the Cartesian point, a C++ template is used to declame &y dimension by the user of
the ITK library. The internal point set representation isawsulated into a container class.
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Streaming capabilities are supported by Hné nt Sel f method. A function for nearest
point search is also available.

e Meshlab: Meshlab does not represent point clouds in a dedicated.clas seen in the
interface for registratiorfRoi nt Mat chi ng (cf. FigureA.15), the matching process requires
a vector of points.

Harmonized representation in BRICS

The harmonized Cartesian point cloud will have a vector d@fitscas this is the most com-
mon, among the investigated libraries, and the most coaménvay to represent it. Supported
operations should be streaming capabilities, similar éoGartesian point requirements (cf. Sec-
tion 4.3.1), homogeneous transformation as this just means to forth@rtransformation to each
point in the cloud, and simple manipulation operations f@maple to add new points.

Functionality for point size reduction will not be a part imetrepresentation as it might
not be needed for all 3D perception and modeling applicatidrhis is moved to the algorithms
of the Filtering stage. Tablet.2 summarizes representations in existing libraries andithegu
requirements for the harmonized point cloud. Beside theeSan point cloud, triangle meshes
are a common way to model a 3D scene.

Table 4.2: Comparison table for Cartesian point cloud representation in existing libraries
and requirements for BRICS.

Library Dedicated | Representation| Supports | Stream- Point Robotic Notes
class for transfor- ing reduction library
point cloud mations support
6DSLAM v Vector of points v v v v point cloud is seen
as ascan
MRPT v 3 vectors of - v v v point cloud is part
floats (one for of maphierarchy;
each supports color
coordinate) information
IVT - array of points - - - -
FAIR v vector of v v v v
pointers to
points
ROS v vector of points - v - v generated from
messagéile
ITK v container class - - - -
Meshlab - vector of points - - - -
Require- v vector of points v v - v
ments
for
BRICS

44



Chapter 4. CONCEPT

4.3.3 Triangle mesh representation

Typically the triangle and triangle mesh representatiaessérongly related in the sense
that some libraries use axplicit triangle representation and others ieaplicit representation.
Explicit means that a triangle is represented by a dedicated clasmngle mesh is then a set of
triangle objects. Often the triangles classes are compafdbe three vertices - the edges between
the vertices represent the triangle. Tihwlicit representation does not have a special class for
a triangle. It uses a list of points and a list of indices tleder to the points. Three consecutive
values in the indices list describe indices of three pointthe corresponding point list. Thus
treating triangles and triangle meshes separately, addtie for the Cartesian point and Cartesian
point cloud, is not straight forward. The following sectioiil primarily investigate libraries that
support mesh generation, mesh visualization or are patersiersof a triangle mesh, like motion
planing libraries for mobile manipulation.

Representation in existing libraries
e VTK:The VTK library offers two container classes for mesh repreationsyt kPol yDat a
andvt kUnst ruct uredG i d. Both can be used for sets of polygons, lines or points. A
triangle set is composed of dedicated objects for trian@esFigure A.16). The internal
representation of a triangle is encoded with a set of linengggs, rather then three triangle
vertices. Streaming functionality is supported, but hoer@pus transformations are not
included in the mesh interfaces.

e Meshlab: Meshlab supports many 3D model representations like famgte point sets,
edge mesh, triangle mesh or tetrahedral meshes. Meshldiotrasepresentationgmplicit
andexplicit For the implicit variant (cf. Figuré.18) the user has to self-define the vertex
and face type. An according source code would look like tHieviing statement, with
MyVer t ex andMyFace as user-defined classes:

class MyMesh: public Tri Mesh< vect or <MyVert ex>,vect or <MyFace> >;

With the user-defined type for the vertices, Meshlab sugpoompile-time flexibility to
enhance a vertex by color, normals etc. The explicit reptasien of a triangle uses an
array with three vertices (cf. Figu/.17). The vertices are C++ templates, so the user can
define the primitive type of the coordinates.

As both the implicit and the explicit way to represent trilngeshes have a common access
method it is possible to exchange the underlying representaAt least some algorithms
can work with both representations.

e CGAL:The CGAL library makes excessively use of C++ templatesACGses a container
type to encapsulate meshes, where each triangle is regas@fatet Facets consist dfalf-
edges The conversion between different representations, dsaseitreaming capabilities,
are available.
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e Gmsh: Similar to Meshlab, Gmsh supports many 3D shapes, appaigoiwith lines, trian-
gles, quadrangles, tetrahedra, prisms, hexahedra anahiplg:alTo describe a triangle mesh,
Gmsh uses aexplicit representation. The meshrodel consists of a set dfffri angl e
objects (cf. FiguréA.19). A single triangle has an array of pointers to the vertig@msh
has extdended versions of a triangle, realized via inhra@aThe triangle interface provides
getter and conversion methods for faces or various otheeseptation. It also collaborates
with other libraries like VTK.

e Qhull: Qhull implements implicit triangle meshes in a double &dklist of structs (cf.
FigureA.20). Each vertex is considered an array of coordinates wittedsion three. As
Qhull does not use classes af@lit cannot provide functionality for conversion to other
representations or steaming within the data-type reptaten.

e COPP/BRICSMM : The triangle mesh representation in CoPP and BRM\S are the
same. The triangle is explicitly modeled with three vamabbf a three-dimensional vector
type: Vect or 3 p1, Vect or 3 p2 andVect or 3 p3 (cf. FigureA.21). This representation
has facilities for normal computation, centroid compwatinormal computation area com-
putation and streaming.

e openrave openrave has both: thexplicit and implicit variant. The explicitTRI ANGLE
class consists of three vectors, each representing a (efteixigureA.22). An interesting
observation is that openrave does not seem to useRh&NGLE class in a mesh. In fact all
meshes are represented with thmplicit representation in th&Rl MESH (cf. FigureA.23).
Here a vector of vertices and a vector of correspondingogstis used. The triangle mesh
has streaming support but no conversion to other 3D modela\ailable, as no other 3D
models are used for the mobile manipulation motion planners

e OSG:. The OSG library encodes a triangle mesh in Thé angl eMesh class, which is a
specialization of &hape super class (cf. FigurA.24). The mesh uses\ec3Arr ay for
vector vertices, while each vertex is a three dimensidiwt array. To form the trian-
gles, anindex list ndexAr r ay for the corresponding triangle indices is used. This tiiang
mesh class does not support transformation to other 3D maaded does it support stream-
ing directly. Typically aTri angl eMesh is hooked into a&Geode(cf. Section3.3) and is
forwarded to the OpenGL layer to be rendered.

¢ ROS: ROS has ajeometricshapespackage in thenotion planningcommonstack. This
package considers esh as a specialization of a shape (cf. Fig&e5). The triangle
mesh is represented in amplicit manner. An array otlouble values store the vertices.
Each consecutive three values form a vertex. Similar tq #®&h three consecutiviat

9Qhull was started in the mid 1990s as a C project that meanseo€f++ was even standardized in 1998.
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values form a triangle in the array for the indices. Conwerdpb other 3D models and
streaming support are not included in the triangle mesksclas

Harmonized representation in BRICS

Reviewing the previously analyzed libraries, there are b@mmon ways to represent a
triangle mesh: First, thamplicit representation with a vector of vertices and a vector oftiesli
Three consecutive indices, referencing the vertices vefdon a triangle. The advantage is the
memory efficient storage, as vertices do not need to be a@enultiple times into the mesh if
one vertex belongs to several triangles. The disadvangatiai both vectors have to be carefully
maintained while adding or removing triangles. Furthemnibris not flexible for future exten-
sion, because a triangle might have additional informalilken normals, color, a validity flag, a
probability or a texture reference.

The explicit version has a vector of triangles, whereas each trianglsigisrof three ver-
tices. The representation is more flexible in the sense thasia triangle class can be extended or
decoratedin future developments, similar to the Cartesian point. &uthe other hand it might
be less memory efficient.

As an interesting observation, Meshlab already suppotts types of representation. In-
spired by this, a harmonized triangle mesh should suppadit tlepresentations. An abstract class
allows access with a common interface, so a potential useclvaose which implementation fits
most to an application or a problem. However that does nasserily means both representations
are always fully exchangeable.

A common functionality is the streaming support which alkaw easily read and write data
to standard output, files or other implementations of tiiemgeshes. A support of transformation
to other representations of 3D models (e.g. splines) isaadible, because first, the triangle mesh
is already the predominant representation, and secong fewllibraries support this feature. As
an additional feature a harmonized triangle mesh should@tpomogeneous coordinates trans-
formations similar to the Cartesian point clouds. The natton for this is that a potential user
might create a mesh first, or the used depth perception daiready delivers a mesh, and then
register it into a global frame with an appropriate algarith

Table 4.3 recapitulates the common representations and capahildied the resulting re-
quirements for a harmonized triangle mesh data-type.

Note that the concept for a triangle mesh can be easily appli@tetrahedralcomplex.

This data-type might occur as an intermediate step to padusurface mesh (for example in
Dalaunay triangulation based mesh generation approachksjmplicit variant uses a vector of
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vertices and a vector of indices. Each consecutive fourtpaiarrespond to the four vertices of

one tetrahedron.
Theexplicit variant is a vector of tetrahedrons. A single tetrahedrorsists of three trian-

gles. The triangle class is the same for the tetrahedronterekplicit triangle mesh.

Table 4.3: Comparison table for triangle mesh representatin in existing libraries and re-

quirements for BRICS.

Library Explicit or Triangle mesh Explicit triangle Stream- Transfor- Robotic Notes
implicit representation representation (if ing mation to library
triangle present) support | other repre-
representa- sentations
tion
VTK explicit array of triangles set of lines v - -
Meshlab both vector of vertices array of 3 vertices - - - user defined
and facets or vector| data-types;
of triangles both represen-
tations can be
used
CGAL explicit container class that - v v - heavily
holds facets templated
gmesh explicit vector of triangles | array of 3 pointers v v -
to vertices
Qhull implicit double linked list of - - - -
structs for vertices
and indices
CoPP & explicit vector of triangles 3 vertices v - v
BRICS.MM
openrave both vector of vertices 3 vertices v - v triangle
and indices representation
unused
0OSG implicit vector of vertices - - - -
and indices
ROS implicit array of vertices - - - v
and indices
Require- both vector of vertices array of 3 vertices v - v
ments for and facets or vector|
BRICS of triangles

4.4 Refactoring and harmonization of common algorithms

In this section common atomic algorithmic components aesgmted. They are described
with UML software component diagrams. As the harmonized rafiactored algorithms will be
implemented with the C++ programing language, the compan&rfaces will presented in C++.

For 3D perception and modeling at least the following atotwimponents can be identified:

e Octree algorithm
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e lterative Closes Point algorithm
e k-Nearest Neighbors search algorithm
e Delaunay triangulation

This list does claim to be complete, but these are the mosbogand common elements as
deduced from th&xplorationphase (cf. SectioB.2). The remainder of this section investigates
each of the components and discusses the interfaces.

4.4.1 The Octree component

The Octree algorithm is the de-facto standard to reduce plwinds and it is used for voxel
representation or for surface mesh generation approadtmesOctree can be regarded as a com-
mon atomic element for 3D perception and modeling appbosati

The Octree component has two different roles: firsteasiction filterand second as struc-
turedpartition of the space into cubes. To account for both roles, two segghprovided interfaces

are offered for each functionality. The first functional earface is the
| OctreeReductionFilter. It provides capabilities to reduce point clouds. The pdedi
method virtual void reducePoi nt C oud(Poi nt Cl oud3D« ori gi nal Poi nt Cl oud,

Poi nt Cl oud3Dx r esul t Poi nt Cl oud)= 0; needs a point cloud as input and creates a new point
cloud with the reduced size. The other functional interfaCet r eePar ti ti on provides func-
tionality to partition a point cloud in a set of smaller ponibuds. The functionvirtual void
partiti onPoi nt C oud(Poi nt O oud3D« poi nt C oud, st d::vect or <Poi nt C oud3D>x

poi nt Cl oudCel | s)=0; accepts a point cloud as input parameter and creates a néwr véc
point clouds that represents the cells with the points.

To decouple the configurable parameters, a third providiedifate is offered. The param-
eter that needs to be defined is thuxel size Therefore the interfaceCct r eeSet up has a getter
and a setter method to manipulate the parameteel Si ze. The Octree component does not
depend on an other modules and thus has no required interfamred.1 shows the according
component diagram.

I0ctreeSetup

I

o———
<<component>>

I0ctreeReductionFilter

Octree
O

|OctreePartition

Figure 4.1: UML component diagram of the Octree algorithm.

49



Chapter 4. CONCEPT

4.4.2 The lterative Closest Point component

The most common way the to register multiple point clouds orte common coordinate
frame, is to use the Iterative Closest Point (ICP) algorithm

Reviewing Algorithm2.1, the ICP has two major sub-elements: a step that establistiets
correspondences and a step that can estimate rigid tremetfons. Both steps can be solved
by various approaches. To be able to exchange atomic patts steps will be encapsulated as
subcomponents. These subcomponents will be addressec igghired interfaces of the ICP
componentl Poi nt Cor r espondence andl Ri gi dTr ansf or mati onEsti mati on.

This ICP component offers the simple matching functiogailit the provided interface:
IlterativeC osestPoi nt. This minimal interface needs to accept two point clouchdel
anddata and calculates the translation and rotation that needs t@pplied to the data so that
it is aligned to the model. The rotation and translation carsbmmarized in a homogeneous
transformation matrix, and is accessible with ttesul t Tr ansf or mat i on output parameter:
virtual void mat ch(Poi nt Cl oud3D« nodel , Poi nt G oud3D« dat a, | HonbgeneousMat ri x44
x result Transf or mat i on)=0;. Details of the homogeneous transformation of point andtpoi
cloudsl HonogeneousMat ri x44, can be found in Sectios.3.1

Beside the above explained simple interface, a second fanger
IlterativeC osest Poi nt Det ai | ed is offered that reveals more internal details to the user
of this component. A potential user of this component mighatmo define new termination
criteria or a system scheduler has the responsibility tokevthis component iteratively ac-
cording to a scheduling policy. The interface has getter setter methods for thdata and
the modelpoint cloud and a methodirtual double per f or mNext | t er at i on()= 0; that invokes
only one iteration of the ICP and returns the error accordm@quation2.2 Functions like
get Last Est i mat edTr ansf or mat i on and get Accurnul at edTr ansf onat i on allow to get
intermediate and accumulated results of the transformafibis is astatefulinterface that means
the results rely on previous states for example invocatiohsset Data, set Model or
per f or MNext | t er at i on. This implies acontracton the interface: to correctly use this interface
first setdataandmode] then invokeper f or nNext | t er at i on, as often as desired.

Note that thd | t er ati veCl osest Poi nt is astatelessnterface, and the behavior is al-
ways the same (even if multiple threads invoke the matchingtfonality), while the behavior of
I Iteratived osest Poi nt Det ai | ed depends on the history of preceding everdid.[ Both
interface types are clearly separated.

The interface that fulfills theonfigurationrole is thel I t er at i veCl osest Poi nt Set up.

It allows to set and get the convergence threshold, the marimumber of iterations and it allows
to configure the required subcomponents. The subcompoaentarther describes in the follow-
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ing sections. All interfaces for the ICP components are digaicted in an UML class diagram,
see FiguréA.31. Figure4.2presents the component diagram for the ICP.

lIlterativeClosestPointSetup

T
<<component>> gl
o— f
lIiterativeClosestPoint Iterative Closest Point . ~
IPointCorrespondence
oO—
-
literativeClosestPointDetailed ~
IRigidTransformationEstimation

Figure 4.2: UML component diagram of the Iterative Closest Bint algorithm.

The Point Correspondence subcomponent

The component for establishing the point-to-point coroesiences, needs two point clouds
as input data. And returns a list of corresponding pointstepoesent the corresponding points a
new class is in introducedor r espondencePoi nt 3DPai r. It essentially consists of two Carte-
sian points that model the correspondence.

The provided interfacePoi nt Cor r espondence has just one method that allows to calcu-
late the point-to-point correspondendgetual void cr eat eNear est Nei ghbor Cor r espondence
(Poi nt Cl oud3Dx poi nt Cl oudl, Poi nt Cl oud3D« poi nt Cl oud2,std::vect or <

Cor r espondencePoi nt 3DPai r >x r esul t Poi nt Pai r s)=0;. The component does not need
to be configured, as it has no parameters, nor it needs aeéddoterface. As internal realization
the k-Nearest Neighbor search component, which will be pregdater, could be used, but this is
completely left to the implementation. Figute3 shows the according UML component diagram.

<<component>> ﬂ

Point Correspondence

07

IPointCorrespondence

Figure 4.3: UML component diagram of the Point Corresponderce component.

The Rigid Transformation Estimation subcomponent.

The second required interface for the ICP algorithm, is tlggdR ransformation Estimation
component. It provides one interfaceRi gi dTr ansf or mati onEsti mati on. This interface
has a list of point correspondences as input and a homogetemsformation as output param-
eter, to store the resulting transformation. The returne/& the resulting error according to Equa-
tion2.2 virtual double est i mat eTr ansf or mat i on(vect or <Cor r espondencePoi nt 3DPai r

>x poi nt Pai r s, | HonbgeneousMat ri x44x«resul t Transf or mat i on)=0;
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The component has no required interfaces, nor it has pagasitéiat need to be configured.
Figure4.4 shows the component diagram.

<<component>> @

O Rigid Transformation Estimation

IRigidTransformationEstimation

Figure 4.4: UML component diagram of the Rigid Transformation Estimation component.

4.4.3 Thek-Nearest Neighbor search component

The k-Nearest Neighbor search component is a general algorittoaorhpute thé: nearest
neighbors to a point (or a vector of values in general). NaaYeighbor search operations are for
example used byegistration or normal estimation filteringalgorithms, thus it can be seen as a
common atomic element for 3D perception and modeling.

The component will account for two different roles, the fissta general user that might
want to use the component in a completely other context thlaotics, and the second users uses
Cartesian points with dimension three. The more generaifate is called Near est Nei ghbor
and allows to set a multidimensional vecttata f i ndNear est Nei gbor uses a vector as query,
as well ask, and it will return a vector of indices to thenearest neighbors (cf. Figuhe34).

The interfacel Near est Poi nt 3DNei ghbor is specific to the 3D perception and model-
ing domain, as it uses Cartesian points. Instead of a mmiédsional data vector, the data is
defined by a point cloud. The query isPai nt 3D, rather than a vectorvirtual vect or <int>
fi ndNear est Nei gbor (Poi nt 3D« query, int k=1)= 0; The default value fok, for this interface
and the above one, is

Both interfaces arstatefu] as most implementations first crate an appropriate setmaty s
ture, like for example a search tree. Search queries areat@ierated by using that structure.
Whenever in thé-Nearest Neighbor interfaces tHatais set, these search structures are created.
As a consequence the user has to follow¢batractthat first thedatais set and afterwards the
queries are invoked. In addition to that, the component émgintation has to check erroneous
input like search queries that have a mismatching dimensitinthe data

The configuration interfaceNear est Nei ghbor Set up allows to get thali nrensi on and
to set and get an optional parameter for the maximal allowistmte, to regard an element as
neighbor. This component has no required interfaces armésepted as UML component diagram
in Figure4.5.
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INearestNeighborSetup

I

: <<component>> @
INearestNeighbor Nearest Neighbor
oO———
INearestPoint3DNeighbor

Figure 4.5: UML component diagram for the k-Nearest Neighbor search component

4.4.4 The Delaunay Triangulation component

The Delaunay Triangulation algorithm is commonly used asnat element among the
mesh generation algorithms, like for example the algorittuithe CRUSTand COCONEfamily
or thea-shapes method, depend on this triangulation (cf. Se&tign

The primary role of the Delaunay Triangulation componei isreate a triangulation from
a point cloud. The result of a 3D triangulation is a set ofaleéidrons, which is accessible as output
parameter: virtual void tri angul at e(Poi nt Cl oud3D« poi nt C oud, | Tet r ahedr onSet x
t et rahedr ons)=0; The representation of a tetrahedron set is discussed im8eLB8.3 Be-
side the 3D triangulation an application might only need BBngulations embedded into a 3D
space. That means one axis is ignored and the elevatiorstestts is flattened. This could be the
case if the triangulation is directly applied to a depth imaghereas the depth axis is ignored.
In this case the 2D triangulation would be faster, becausgthblem space is reduced by one
dimension. The following method offers this capabilitidaput is a point cloud and a triangle
mesh is the output parameter. The parametgror e allows to specify, which axis should be
ignored: virtual void tri angul at e(Poi nt C oud3D« poi nt Cl oud, | Tri angl eMeshx nesh,
axi signore=2)=0;

All triangulations obey théDelaunay property(cf. Section2.3.5, and do not need any
further parameters. That is why there is no configuratioarfate for this component. It also
has no required interfaces. Figutesillustrates the UML component diagram fro the Delaunay
Triangulation.

<<component>> @

Delaunay Triangulation

o—

IDelaunayTriangulation

Figure 4.6: UML component diagram for the Delaunay Triangulation component
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IMPLEMENTATION

This section presents details of tRefactoring(cf. Section4.1.3 and Integration (cf. Section
4.1.4 phases. Implementation of the requirements for harmdrilzda-types are explained, then
the realization of the components for common algorithmspeassented. The software is integrated
into theBRICS3D library. Note that the development of the BRIGS library continues beyond
the scope of this master thesis.

5.1 Choice of programming language and tools

The implementation is done in thé++ programming language. It is a multi-paradigm
language that supports object-oriented programming,tlldds not enforce it. This is by far the
predominant language in the field of robotics, computatiggmetry and 3D perception and
modeling in large. Most libraries in these domains are diyearitten in C++ or C. See also
Section3.3

The development is accompanied by a couple of toolsInfegrated Development Envi-
ronment (IDE)the Eclipse (Galileo)platform is used, in combination with th@DT plug-in for
C andC++ developments. The source code is documented Ruitkygen to automatically gen-
erate manual pages. TEeloxplug-in for Eclipse helps to create Doxygen conform souimgec
comments. To foster operating system independence, thE®BD library is compiled with the
CMakebuild system. A plug-in calledmake editorfor Eclipse enables syntax-highlighting and
code-completion capabilities for the CMake configuratidesfi Further tools are thBubversion
(SVN)code revision system in combination with a Subversion @uéer Eclipse that directly
allows to update and commit source code.

For profiling, in terms of how many time has been spend in wifictction, theOProfile
is used. To check memory consumption and memory leak¥dhgrind suite is utilized. Both
tools have a good integration into the Eclipse platform whighLinux Toolsplug-in. As unit test-
ing framework theCppUnitlibrary is incorporated. Success and failure of single tasts can
be visualized with th&CUT plug-in for Eclipse. The benefit of unit tests is tremendousd)
the refactoring phases. To name an exampled#worator patterrfor the Cartesian points was
applied after an initial and simple version of the point esggmtation. As the point data-type is
used by nearly all other algorithms it is crucial to be ableheck if the desired behavior does not
changes, while refactoring the code.
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Boumlis a powerful tool to create UML diagrams. Among others, pmuorts class and
component diagrams. It has the ability to generate sourde skeletons for C/C++. It even has
capabilities to reverse engineer source code. That mearisdlids diagrams are generated from
existing code. Manual adjustments still have to be donegimeBouml has problems with C/C++
macro expansions or some dependencies are not resolvedSaheiemplates are used. All UML
diagrams presented in this work, are created with Bouml.

A note on the development process: the development roughityws agile software de-
velopment principles119], with tools that allow test-driven development, a coddgiewm system
that encourages modification of existing code, collect@ecowner-ship in the SVN source code
repository, coding conventions and appropriate docuntientén the source code. A continuous
integrations system that automatically compiles the sarféwon different operating systems with
different compilers, is planned for the near future.

5.2 Implementation Overview

The implementation aims towards erample chairof processing stages that can produce
a triangle mesh from a point cloud. As backbone for 3D peforpind modeling applications,
the harmonized data-types Cartesian point, Cartesion ploind and the triangle mesh are imple-
mented. Thelepth perceptiostage ins realized by functionality to load data sets, whrehstored
in depth images, simple text files or a file format that is usetP&'s Care-O-bdt! platform. The
Octree for thdiltering stage k-Nearest Neighbor search, the ICP algorithnneggstrationmethod
and a 2D Delaunay triangulation faresh generatioare implemented. Point clouds and triangle
meshes can bdsualized Segmentation algorithms are not implemented. The recebamnd-igure
5.1 contains which parts are realized, with respect to the ggiog stages.

®1http://www.care-o-bot-research.org/
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algorithms data-types

raw data

Depth perception

point cloud
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Segmentation
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Figure 5.1: Overview of implemented data-types and algoritms

5.3 Common data-types
5.3.1 Cartesian point representation

The Cartesian point representation is implemented in @esebi nt 3D (cf. FigureA.26).
As proposed in Sectiofh.3.1the point representation has a simple), z representation. To satisfy
the requirements, to be able to choose the data-type at otimpée, the Coordinate data-type can
be changed by adjusting a typedef for the coordinate tgpedef double Coor di nat e;

The coordinate values can be easily accessed and with du@istg operatobperator< <
andoperator>>. Printing a pint to the standard output is convenient, aseidins just invoking:
st d::cout << exanpl ePoi nt ;.

The basic matrix functionality is implemented with operatdlhe operatorsperator+ and
operator— allow to add and subtract two points, while thygerators enables multiplication with a
scalar value. The homogeneous transformation is an impgdctaction for the Cartesian point rep-
resentation and is implemented in the following function:
virtual void honbgeneousTr ansf or mat i on(l HonbgeneousMat ri x44 «t r ansf or mat i on);

Thel HonogeneousMat ri x44 class (cf. FigureA.27) is an abstract interface to a homo-
geneous transformation matrix. This abstract class hangally one functiorgyet RawDat a that
returns a pointer to a data array that stores the values dfahsformation matrix. This array
stores the values in column-row orffeand has a fixed of siz&s. This is the most general and

®2The first four entries in the array belong to the first matrifuon, the next four elements to the second column
and so on.
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simplest form to represent a matrix. The interface also hastions to multiply matrices with
each other, to print the values with the streaming opergierator<< or assign new values with
the operator= function.

The interface is implemented in th@®nogeneousMat ri x44 class (cf. FiguréA.27). It
uses thetigenlibrary to implement matrix multiplications and convertiset-up in the class con-
structor. The transformation function ioi nt 3D depends only on the abstract interface, rather
on the implementation of the homogeneous matrix. This comao theDependency Inversion
Principle [119. The goal is that no harmonized data-type relies on anyreatdibrary.

A point might have additional information like color or a nual vector. To allow good
extendability, thedecorator patterr{9] is applied. ThePoi nt 3DDecor at or has the same inter-
face as thePoi nt 3D as it inherits from it. Additionally it holds a reference to mstance of a
Poi nt 3D. Whenever a function of the decorator is invoked it is indédgnforwarded to this point
reference.

An example realization of a point extension, is tte or edPoi nt 3D class that adds new
variables for the additional color information. It inherfiorm thePoi nt 3DDecor at or, thus it
can wraps a point into a layer or skin that appears to the outed as a regulaPoi nt 3D, but
internally it has additional information that is acessibi¢h the Col or edPoi nt 3Dinterface.

It is possible to perform multiple decorations on a pointthlis case, it can be seen as some
kind of onion that has different layers - each adds a new ot information. Queries to the
outer layerPoi nt 3D are forwarded to the core in cascaded way.

5.3.2 Cartesian point cloud representation

The point cloud is a collection of Cartesian points. As caded in the requirements for a
harmonized point cloud representation (cf. SecddBl?), it consist of a vector of pointsst d::
vect or <Poi nt 3D>* poi nt Cl oud;. The reference to the vector can be accessed via
get Poi nt C oud. The vector can contain either normal points of tygme nt 3D or decorated
points. Actually for the point cloud there is no difference.

The point cloud clasBoi nt Cl oud3D(cf. FigureA.28) implements abilities to apply a ho-
mogeneous transformation to all points. THwmgeneousTr ansf or mat i on method forwards
thel HonogeneousMat ri x44 to every point in the vector. A similar behavior have theatnang
methodsoperator<< andoperator>>, as data is forwarded from or to the points.

The point cloud offers simple capabilities to make the da&tssigtent, as it is able to load

and store from text files. Furthermore data can be saved tphéormat that is supported by
many 3D modeling and visualization tools. Figix@ demonstrates some example point clouds.
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(b)

Figure 5.2: Examples of point clouds. (a) shows th8tanford bunny as point cloud (b) shows
a Pringlescan. The left point cloud has the decorated color points andte right cloud has no
decoration. (c) depicts the same point cloud, but slightlystated.

5.3.3 Triangle mesh representation

Triangle meshes are often represented imgplicit or anexplicit manner. As explained in
Section4.3.3 the harmonized representations should support bothovessio grand flexibility.

TheTri angl eMeshl npli cit class (cf. FiguréA.29) implements thémplicit version. It
has a vectoverti ces that holds the points of typoi nt 3D. In combination with the ndi ces
vector triangles can be represented. €Rplicit mesh representatiofr i angl eMeshExpl i ci t
has a vector of triangles (cf. Figuke29). Each triangle is modeled by the class angl e. It has
an array of dimensioB to store the vertices belonging to a triangle (cf. Figrd. Both mesh
implementations allow access to their individual vectaesgetter and setter methods.

To make both variants exchangeable, they share the samfadeteTr i angl eMesh (cf.
Figure A.29). It gives a common access to a the vertices of a triangle vidual Poi nt 3D«
get Tri angl eVert ex(int t ri angl el ndex, int ver t exl ndex)= 0;. Triangles can be added and
removed withaddTri angl e andr enoveTri angl e. The adequate maintenance of the under-
ling structures has to be handled different by both mesh@mphtations. The interface offers
functionality to apply homogeneous transformation magicTo transform a mesh, the matrix is
propagated to the storé&ui nt 3D objects.

Streaming capabilities are available by tiperator< < andoperator>> methods, similar to
a point cloud. A subtle issue arises with the usage of suctatgrs in an abstract interface, within
C++. The operators need to have the modifiend to be used easily. Otherwise a stream could
only be send from one triangle mesh to another triangle mésyould not be possible to stream
to a file or the standard output. Unfortunately an abstraattfan cannot have the modifiéiend .
To resolve the dilemma, the non-abstract steaming opsr&oward the steams to the abstract
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read andwr i t e functions. An illustration of an example triangle mesh carsbeen in Figuré.3.

Figure 5.3: Example of a triangle mesh. The image shows tH&anford bunny with a triangle
mesh of its surface.

5.4 Common algorithms
5.4.1 The Octree component

The Octree component is realized in a single cass ee (cf. FigureA.30). It implements
all the provided interfaces. The functionality to createCarirees is taken from the 6DSLAM li-
brary (cf. Sectior8.3). TheCct r ee class can be seen as a wrapper to the 6DSLAM library.

The Figureb.4gives an example of the Octree reduction filtéct r eeReduct i onFi | ter,
which is applied to the Stanford bunny data set. The unfiteszsion, as already depicted in Fig-
ure 5.2(a)has40256 points is the point cloud. The Octree algorithm witlvaxel sizeof 0.002
reduces this point cloud t8048. A voxel sizeof 0.004 createsl444 points and avoxel sizeof
0.005 further increases the size 4a8.
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@ (b) (©

Figure 5.4. Example of Octree reduction. (a) shows thé&tanford bunny as reduced point
cloud with voxel size=0.002. (b) shows the data with avoxel size=0.004. (c) presents further
reduction with voxel size = 0.005.

5.4.2 The lterative Closest Point component

Thel teratived osest Poi nt (cf. A.31) class serves as a generic implementation of the
Iterative Closest Point algorithm. It follows tis&rategysoftware design patter®], with the slight
modification that context and strategy are implemented in the same class.
Iteratived osest Poi nt holds two referencesssi gner andest i mat or to the abstract in-
terfaces of the subcomponents | Poi nt Cor r espondence and
| Ri gi dTransformati onEsti mati on. The references are trigged during the iteration of the
algorithm (cf. Algorithm2.1). The concrete instances are defined beyond the scope of the
IterativeC osest Poi nt class and are configurable through the
I Iteratived osest Poi nt Set up interface. That means that the actual point correspondence
and the rigid transformation estimation algorithms arehexgeable during runtime.

C++ has no possibility to encode a required component aaterf Though the fact that
concrete implementations for the above mentioned the gdritams are needed, shall reflect the
required interfaces of ICP component here. This comporisatres to take into account that the
IlterativeC osest Poi nt Det ai | ed is astatefulinterface, while the other one ®ateless
The statful interface stores the intermediate steps in member vasdblethenodel anddat a
point clouds, and the transformation matrices. Statelessnterface uses its own version of the
model anddat a variables and thus hides their member pendants. This predata corruption
if both interfaces are called in an intermixed manner.

The Point Correspondence component

The Point Correspondence component creates point-td-pairespondences between two
point clouds, by computing the Nearest Neighbor from eadhtgoom the first point cloud to
the points of the second point cloud. Two implementationthisf component are available (cf.
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FigureA.32). The first bases on the optimized k-d tree for dimensioit is implemented in the
6DSLAM library and the clasBoi nt Cor r espondenceKDTr ee creates a wrapper to comply the
| Poi nt Cor r espondence interface.

The second implementatidi nt Cor r espondenceGener i cNNuses the generatNearest
Neighbor component (c6.4.3 with dimension =3 and neighborhood = 1.

The Rigid Transformation Estimation component

An implementation of the for Rigid Transformation Estinoaticomponent only has to sat-
isfy thel Ri gi dTr ansf or mati onEsti mati on interface. Five different algorithms to solve the
estimation are available (cf. Figufe33). They are taken from 6DSLAM library and adapted to
the component interface.

The Ri gi dTr ansf or mat i onEst i mat i onSVD implements the transformation with the
Singular Value Decomposition (SVBpPproachRi gi dTr ansf or mat i onEst i mat i onQUAT uses
the quaternionbased methodii gi dTr ansf or mat i onEst i mat i onORTHOexploitsorthogonal
properties in combination with theigensystemRi gi dTr ansf or mat i onEst i mati onHELI X
implements thenhelical motionestimation andRi gi dTr ansf or mat i onEst i mat i onAPX real-
izes thdinear approximation.

To cope with all possible variants of Point Correspondena Rigid Transformation Es-
timation, a factory claskt er at i veCl osest Poi nt Fact ory can assemble the subcomponents
for the ICP component. It accepts a XML configuration file,gearit and creates the according
instances.

Figure5.5 gives an impression of the ICP algorithm. Two different, buérlapping data

sets, here depicted with green points in Figbirg(a)and with white points in Figur&.5(b), are
registered into one consistent coordinate frame, as sdeigume5.5(c).
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(@) (b) (©

Figure 5.5: Example of ICP registration. (a) shows the first pint data set (b) shows the
second data set and (c) presents the resulting point cloud @pplying the ICP to (a) and (b).

5.4.3 Thek-Nearest Neighbor search component

The k-Nearest Neighbor search component can use three diffienplgmentations, as de-
picted in the UML class diagram in Figufe34.

Near est Nei ghbor ANN realizes the search functionality with tAéN library. The algo-
rithms in theFLANN library comply to the component interfaces with tNeear est Nei ghbor FLANN
class. The third implementatiadear est Nei ghbor STANN uses functionality from th6& TANN
library. Further information to the libraries can be foundSection3.3.

The k-d tree implementation, as it is used in the Point Cpordence implementation
can not be reused, as it is to restricted with dimensicand neighborhood = 1. All three
implementations automatically deduce the dimension frioeinput data. To prevent undefined
behavior of the component, assert statement checks if a query has the correct dimensionality,
with respect to the data.

5.4.4 The Delaunay triangulation component

The Delaunay Triangulation component is partially implatee with the Delaunay func-
tionality from theOpenSceneGraph (OS®)rary, with the cals®el aunayTri angul at i onOSG
(cf. FigureA.35). OSG only supports 2D tringulations of 3D dimensional p®irthus the 2D
tri angul at e method wraps the OSG function. Beside this, the data-tyfjes r ahedr onSet
is also left for future implementation.

The previously mentioned triangle mesh in Figbt8, was generated by the implemented
triangulation.
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5.5 Framework integration

Further source code has been developed to embed the conpanerthe BRICS3D li-
brary. Some classes are presented here.

The clasDept hl mageLoader can loaddepth imagesAfterwards, the depth images can
can be forwarded to thBept hl mageToPoi nt C oudTr ansf or mat i on class, to generate point
clouds. The transformation has a threshold to slice thedrackd off, if needed. That means, all
pixels that are further away from the perception device tharthreshold, are discarded.

Thel paDat aset Loader can load the fused data sets of range and color images relcorde
on a Care-O-bot platform. The result is a point cloud withateted color points. Theringles
can, previously seen in Figur&2(b)and5.2(c)is an example of a successfully loaded data set.

The visualizationcapabilities are realized with the OSG library. Point cleaahd triangle
meshes can be displayed. In OSG it is benifitial for huge pdmids, to partition them into
bunches of approximately no more théh 000 points, perGeode Otherwise the performance
drops significantly. The partition into multiple bunchesaants for the parallel architecture of
the graphics adapter hardware.

Benchmar k is a simple benchmark suite that allows to store benchmguiésults in an
automated way. Instead of printing (intermediate) redwoltthe standard output, they are sent to
the benchmark object. Each benchmark object needs to ldiz@t with a name that is used to
create a logfile to store the results. A logdfile is stored inlddbnamed by the current time-stamp
ina YYYY-MM-DD _HH-MM-SS fashion, for example "2010-02-167-02-22".

Every new benchmark instance after the first one also sttgdsgfile in the same time-
stamp folder. This means one time stamp represents one rarpaicess, from its creation to
its termination. The intention is to repeat a benchmark Igureching its process. That allows a
benchmark to be scheduled by the operating system or a shiell. s
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EXPERIMENTAL EVALUATION

Algorithms of the 3D perception and modeling domain havenbesfactored and harmonized,
to make them easier to benchmark on a component level. Thapt€hpresents an initial set
of benchmarks of the atomic components to judge, which #dhgos arebest practicefor 3D
perception and modeling. The Chapter will start with a dpsion of the used test-bed, will
discuss the used metrics and will present a number of ber&smaith focus on the registration
process.

6.1 Evaluation environment

The benchmarks are performed on an off-the-shelf laptop #@&Hz dual core processor,
with 3GB memory and a Nvidia graphics adapter. The operayrsgem is an Ubuntu 9.10 with
Kernel version 2.6.31-20. The source code is compiled \aighgicc compiler version 4.4.1. Com-
piler options are set to debug, that means no optimizatiomsetivated. The experiments have
been performed with source code revisidgi of the subversion repository.

The benchmarks are conducted with recorded data sets. Ededasa set is th8tanford
Bunny All benchmarks are performed with the help of 8enchmar k class to allow systematic
documentation. All experiments are performed multiplessrand results show mean and standard
deviationo.

6.2 Performance metrics

The set of benchmarks measure different properties of faetoged and harmonized algo-
rithms. The metrics arexecution timememory consumptioanderror values, if suitable.

e Processing time: This measures the required processing time. It is deduosal tihe dif-
ference of one time stamp for and one after invocation of gardhm. The measured unit
is ms. This metric falls into the categoigostsas discussed in Secti@l

e Memory consumption: The memory consumption is measured with Yadégrind profiling
tool. Like execution time, it measures tbestsof an algorithm. Results are presented with
M B as measurement unit.

e Error: The error values that can be measured depend on the atgorfor example the
Rigid Transformation Estimation returns an error valueisTdives hint about theuality
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of the output of an algorithm. This metric belongs the thesgaty utility as presented in
Section3.1

Depending on the algorithm, further metrics are appliedgf@mple how many iterations
have been performed within the ICP.

6.3 Performance of Cartesian point data-type

The purpose of this benchmark is to measure the influenceeotdbrdinate type in the
Cartesian point representation. Two metrics are appliest, the processing time while perform-
ing a homogeneous matrix transformation is measured armh@ethe memory consumption is
measured.

The benchmark is performed as follows: a point cloud is cratih 10, 000 points. Then
the matrix transformation is applied. Iterativelg, 000 points are added and the transformation
matrix is applied again. To ensure repeatability of thisegipent the random generator always
has the same initisdeedof 0. The whole experiment has been repeatedimes with either the
double or the float representation.

Table6.1 presents the results for the measured quaptibgessing timeThe same data is
plotted in Figures.1 The outcome is that there is no significant difference inpiteeessing time,
on the used test-bed.

The memory profiles, crated witalgrind tool are shown in Figuré.2 The float based
representation consum&g457033 Bytes as peak, while thibuble based representation consumes
88205769 Bytes. The latter one requires roughly two times more mertiay the other one. This
result does not surprise adlaat variable needs with its 32bit representation only half ttesmary
than the 64bitiouble representation.

If enough memory is present, tdeuble representation is favored on the used test-bed, as it
has no processing time drawbacks, but offers a higher poeais results.
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Homogeneous transformation timings of double and float coordinates
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Figure 6.1: Benchmark of influence of coordinate type in Carésian point representation.
Table 6.1: Benchmark of influence of coordinate type in Cartgian point representation.
Number of 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
points in
thousand
double 8.41 17.92 19.7 26.16 32.77 39.8 46.03 52.48 59.43 66.09 72.1 79 85.08 91.82 98.56
float 6.42 12.35 18.2 24.06 29.96 36.15 41.63 47.64 53.53 60.2 77.6 83.21 89.31
65.62 71.72
o double 3.86 9.22 0.47 0.56 0.9 1.66 1.08 13 1.76 1.53 1.78 1.91 2.05 2.32 2.19
o float 0.77 1.02 1.67 1.54 2.38 2.96 2.8 3.34 3.63 3.73 4.02 5.26 4.64 5.84 6.25
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Memory consumption profile of double and float coordinates
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Figure 6.2: Memory profiles for coordinate types in Cartesian point representation

6.4 Performance of Point Correspondence

This benchmark measures the performance of the Point @omdsnce component. The
bun000.plydata set is used to create a point cloud. It has a siZ2€2if6 points. A second point
cloud is created by cloning the fist and and then applyingrestatéion vector0.1,0.1,0.1). The
processing time to compute the point-to-point correspooég is measured. The correspondences
are known: the-th point of the first cloud belongs to theth point in the second cloud. This
allows to deduce if a correspondence is correct. The meagurantity is the number of correct
assigned points divided by the total number of points in aald his shall reflect thatility of the
generated output.

All available implementations for the Point Correspondgenomponent are used. The k-d
tree and the ANN, FLANN and STANN implementation for théNearest Neighbor search com-
ponent are benchmarked. All algorithms use their defalltega The maximal distance threshold
hold is the default value Gfo.

The experiment has been performtdtitimes and the results are depicted in Figéra
All algorithms achieve the same amount of correct corredpnoes:100%. The results for the
processing times show differences. ANN and FLANN are theefaslgorithms, closely followed
by the k-d tree. The STANN implementation is significant stowor this test-bed and for this
data set, ANN and FLANN can be considetsekt practice
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Timings and amount of correct correspondence for Point Correspondence algorithms
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Figure 6.3: Benchmark results for the Point Correspondencealgorithms

6.5 Performance of Rigid Transformation Estimation

The purpose of this benchmark is to evaluate the Rigid Toansdtion Estimation compo-
nent. The set up is similar to the above benchmark. GUm@00.plydata set is used to create two
point clouds with know displacement to each other. The disghent is defined by the translation
vector (1, 1,1). The measured quantities are the processing time, thdingstubot mean square
(RMS) error of the point cloud distances and a metric thatsuess how similar the estimated and
the inverted known transformation matrices are. Each ma#iue is incorporates into an RMS
error value.

The implementations for Rigid Transformation Estimatiomprise the Singular Value De-
composition SVD, the quaternion based approach QUAT, theahenotion (HELIX) and the lin-
ear approximation approach APX. The implementation foroiieogonal properties ORTHO was
not used, because of an unsolved failure during execution.

The results, as presented in Fig@d, reveal that the point cloud distance errors and the
matrix errors are identical. There are differences in tlee@ssing time: QUAT, HELIX and APX
are roughly on the same level whereas SVD is slower. In thég,cfor this data set and on this
test-bed the QUAT, HELIX and APX can be considetsabt practiceas they demonstrate equal
performance.

6.6 Performance of lterative Closest Point

To benchmark the Iterative Closest Point algorithm, allsgde combinations of Point Cor-
respondence and Rigid Transformation Estimation implaatems will be compared. As input
data thebun000.plyand thebun045.plyare used. This are exactly the data sets used in Figére
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Timings and error values for Rigid Transformation Estimation algorithms
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Figure 6.4: Benchmark results for the Rigid Transformation Estimation algorithms

Three metrics are used in the benchmarks. The precessiaddiatign the two point clouds
is measured, as well as the needed number of iterations amdghlting RMS error after the final
iteration.

The parameters of the ICP are set as follows: convergeneshbid is0.00001, the max-
imal point-to-point distance i50 and the maximal amount of iterations is setlt@. Every
matching process was repeatdutimes.

The results for the processing time are illustrated in Fégub(a) Independent of the used
rigid transformation estimation algorithms, the ANN peiotpoint correspondence implementa-
tion outperforms the other algorithms. The STANN implenagion is by far the slowest approach.
This benchmarks also confirms that the point-to-point epoadence problem is the most compu-
tational part of the ICP, as the transformation estimatias ¢nly a minor influence on the timing
behavior.

The amount of required iterations is roughly the same foalglbrithms and is approxima-
tively 20 iterations (cf. Figures.5(b). The only exception is the FLANN approach that needs in
combination with the QUAT estimation the least iteratioh6)(but with the HELIX it needs the
most. In combination with the APX algorithm the FLANN doed n@rk deterministically, as the
numbers of required iterations is not constant in the beackhm

Except for the FLANN approach all point correspondence ritlgms produce roughly the
same resulting RMS error (cf. Figuée5(c).

For the used test-bed and data set the ANN algorithm for lesttialy the point-to-point
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correspondences in combination with SVD or QUAT drest practicechoices, because it is able

to produce the most precise results with the least requirecepsing time.
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Figure 6.5: Benchmark results for the Iterative Closest Pait algorithm
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To conclude this Chapter, it is possible to dedbest practicealgorithms by benchmarking
the refactored components that encapsulate common, atdgudthms. The benchmark results
are only valid for the used test-bed and the used test datdhefmore, the effects of wrapping
and adopting the implementations are neglected. The messagt that a certain algorithis
best practicerather tharit is possibleto get access tbest practicealgorithms.
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CONCLUSION

This Chapter summarizes the contributions and results®fitbrk and depicts open issues.

7.1 Summary

This work has applied software engineering aspects, incpéat software componentso
refactor existing algorithms into common atomic elemeiitsese elements can be benchmarked
to deduce théest practicealgorithms for a specific task.

The 3D perception and modeling domain has been structutedhie subareasiepth per-
ception, filtering, registration, segmentation, mesh gatien andvisualization The state-of-the-
art has been conducted to identify the predominant datestgnd algorithms in these categories.
The Octreealgorithm is an atomic component féittering and mesh generatignthe Iterative
Closest Point (ICP)lgorithm is the predominanegistration method, Delaunay triangulation
is commonly seen in surfaaeesh generatiompproaches and the genekaNearest Neighbors
search algorithm is required by many other algorithms.

Existing libraries have been analyzed to find harmonized-tates that are required by the
above algorithms. Requirements for harmonized data-tigrebe Cartesian point, the Cartesian
point cloud and the triangle mesh representations have freposed and implemented.

The identified common algorithms have been encapsulategaftware components. Har-
monized interfaces for these components have been prapdsedalgorithms are implemented
by refactoring existing source code of public availablediies.

The software components have been embedded into the BBDO&amework. This frame-
work allows to load, process, and visualize data sets amaliles benchmarking of the algorithms.

An initial set of benchmarks demonstrates systematic baadking on the software com-
ponent level of the algorithms. Thus it is possible to dedaoest practicealgorithm for a specific
task.

7.2 Future work
Someopen issueghat remain for future work, are listed as follows:

e More harmonized components and implementation for 3D jpéiare and modeling. This
work has refactored only some of the algorithms. TFlegmentatiorstage is not yet ad-
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dressed. Normal estimation, noise reduction, alternadgéestration methods like NDT or
HSM3D and mesh generation with theshapes algorithm are promising candidates for
future implementation, to name some.

e Further work includes creation of new performance metraas3D models. The Metro
approach 109 is able to measure how similar different meshes are, andhinbig used for
such metrics.

e Incorporation of uncertainty in the data sets is not yet esisid.
e Modeling of grasps and contacts of objects has been nedlsottar.
e Modeling of articulated objects is a matter for future work.

e Appliance of thescenegraphconcept to robotic world modeling is an open issue. That
means representation of the environment in a hierarchimhkructured way.

e Developement of simulated depth perception sensors miglat valuable contribution to
benchmark 3D perception and modeling algorithms. Expearimeould be performeth
the loopwith known ground truth.

e The integration of the refactored algorithms into a reabtgidatform is highly desirable, to
validate the applicability of the algorithms in real worlcksarios.

The ability to makebest practicechoices of algorithms for a specific robotic task, in early
stages of a robot development process, hopefully makepithigss faster and easier.
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Appendix A

UML Class diagrams

This Appendix presents UML class diagrams of the investigiadarts in the public available li-
braries. Please note that some minor relevant methods edésptayed, to improve the readability.

A.1 Data-type representations in existing libraries

A.1.1 Cartesian point representations in existing librares

Point

x : double
y : double
z : double

type :int

Point()

Point(in p : Point)

Point(in p : double)

transform(in alignxf : double) : void

operator <<(inout os : ostream, in p : Point) : ostream

operator >>(inout is : istream, inout p : Point) : istream

Figure A.1: UML class diagram of Cartesian point representdion in 6DSLAM library.
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CPoseOrPoint

™ 1590 - bool
m_x: double
m_y :double
m_2: double

CPoseOrPaintl)
53DPoseOrPoint() - bool

distanceTo(in b : CPoseOrPoin) : double
distanceTo(in b : TPointaD)  double
SqrDistanceTo(in b : CPoseOrPoint) : double
norm() : double:

operator *~in's : double) : void
gotAsVector(inout v  vector_double) : void

getAsvectorVal) :vector_double
getHomogencousMatixVal( : CMiatixDoubleds
gatHomogancousMati(inout out_HM : CMatrixDoubied.
geinverseHomogensousMalrx(inout oul_HM : math: .
distance2DTo(in ax :double, i ay :doutie) :dou
distanceaDTo(i ax :double, i ay : doue, i az.
distance2DToSquarelin ax - double, n a : doublo.
distanceaDToSquarelin ax : double, n ay : double.

CPose

P[operator -(n b CPose3D) - CPoseaD
operator -(in b : GPoInt3D) : GPoInt3D

i oS
‘AddComponents(inout p : CPoseOrPoint) : void <<friend>> :
[ERITEE R S RCIES=ED e ity operator +(in b : CPoint3D) : CPaint3D getAsVector(inout v : vector_double) : void
(GPoliSD{ln = TPoint3D) [ERUEAOR ) addComponents(in p : CPose3D) : void <<kriend>> getHomogeneousMatrix(inout out_HM : CMatrixDouble4.
Eetopovegsouehatr i out oo O e | composePoint(in local_point : TPoint3D, inout glob. ‘operator +(in u : CPoint3D) : CPoint3D

GPosesD) :doudle
getAsVectorinout v :vector_doutie) :void
getAsQuaterion(inout a : mpt:math: CQuateriond.
composeFrom(in A : GPoseaD, in B : CPoseaD) :vod.
operator +=(in b : GPo5o3D) : GPose3D

Figure A.2: UML class diagram of Cartesian point representdion in MRPT library.

<<struct>>

Vec3d

x : float
y : float

z : float

Figure A.3: UML class diagram of Cartesian point representdion in IVT library.



Appendix A. UML Class diagrams

<<struct>> <<struct>>

StrCartesianPoint3D StrPointinfo
dX : double unClass : uint
dY : double fintensity : float
dZ : double fAmplitude : float
StrCartesianPoint3D() dAccuracy : double
StrCartesianPoint3D(in x : double, in y : double, ... afRGB : float
StrCartesianPoint3D(inout point : StrCartesianPoin... bValid : bool

getRawData(inout dBuffer : double) : void pdUserData : double

unUserDatalength : uint

StrPointInfo()

StrPointInfo(inout info : StrPointinfo)

setColor(inout pfColor : float) : void

Figure A.4: UML class diagram of Cartesian point representdion in FAIR library.

ros::Message

Ar

Point32

x : float
y : float

z :float

Point32()

Point32(in copy : Point32)

operator =(in copy : Point32) : Point32
~Point32()

__s_getDataType() : std::string
__s_getMD5Sum() : std::string
__s_getMessageDefinition() : std::string
__getDataType() : std::string
__getMD5Sum() : std::string
__getMessageDefinition() : std::string
serializationLength() : uint32_t

serialize(inout write_ptr : uint8_t, in seq : uint...

deserialize(inout read_ptr : uint8_t) : uint8_t

Figure A.5: UML class diagram of Cartesian point representdion in ROS.

v
i

FixedArray

<<bind>> <TValueType->TCoordRep, unsigned int VLength->NPointDimension>

F-o~ b

GetPointDimension() : uint

operator =(in r : Self) : Point

operator =(in r : ValueType) : Point
operator ==(in pt : Self) : bool
operator !=(in pt : Self) : bool

operator +=(in vec : VectorType) : Self
operator -=(in vec : VectorType) : Self
operator -(in pnt : Self) : VectorType
operator +(in vec : VectorType) : Self
operator -(in vec : VectorType) : Self
GetVectorFromOrigin() : VectorType
CastFrom(in pa : Point) : void
SquaredEuclideanDistanceTo(in pa : Point) : RealTy...

EuclideanDistanceTo(in pa : Point) : RealType

Figure A.6: UML class diagram of Cartesian point representdion in ITK library.
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Eigen::Matrix<_Scalar,3,1>

Point3

Point3(in nx : Scalar, in ny : Scalar, in nz : Sca...
Point3(in p : Point3)

Point3(in nv : Scalar)

Point3(in other : Eigen::MatrixBase<OtherDerived>)...
Construct(in PO : Q, in P1:Q, in P2: Q) : Point...
GetBBox(inout bb : vcg::Box3<_Scalars) : vcg::Box3...

Figure A.7: UML class diagram of Cartesian point representdion in Meshlab.

Vector

data : double

Vector(in x : double, in y : double, in z : double...
operator =(in arg : Vector) : Vector

operator ()(in index : int) : double

operator [](in index : int) : double

ReverseSign() : void

operator -=(in arg : Vector) : Vector

operator +=(in arg : Vector) : Vector

operator *(in |hs : Vector, in rhs : double) : Vec...
operator *(in lhs : double, in rhs : Vector) : Vec...
operator /(in lhs : Vector, in rhs : double) : Vec...
operator +(in lhs : Vector, in rhs : Vector) : Vec...
operator -(in lhs : Vector, in rhs : Vector) : Vec...
operator *(in |hs : Vector, in rhs : Vector) : Vec...
operator -(in arg : Vector) : Vector

dot(in lhs : Vector, in rhs : Vector) : double
SetToZero(inout v : Vector) : void

Zero() : Vector

Normalize(in eps : double = epsilon) : double
Norm() : double

Set2DXY(in v : Vector2) : void

Set2DYZ(in v : Vector2) : void

Set2DZX(in v : Vector2) : void

Set2DPlane(in F_someframe_XY : Frame, in v_XY : Ve...
Equal(in a : Vector, in b : Vector, in eps : doubl...
operator ==(in a : Vector, in b : Vector) : bool

operator !=(in a : Vector, in b : Vector) : bool

Figure A.8: UML class diagram of Cartesian point representdion in KDL library.
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A.1.2 Cartesian point cloud representations in existing braries

Scan

<<vector>>

allScans

points : Point

points_red : double
points_red_size : int
closest_cache : KDCache*
kd : Tree

points_red_lum : double
treeTransMat_inv : double
dalignxf : double
outputFrames : bool

dir : string
numberOfScans : uint
scanNr : uint

fileNr : int

sout : stringstream

maxDist2 : int

<<vector>>

meta_parts

get_transMat() : double

get_rPos() : double

get_rPosTheta() : double

get_rPosQuat() : double

transformAll(in alignxf : double) : void
transform(in alignxf : double, in type : AlgoType,...

transformToEuler(in rP : double, in rPT : double, ...

transformToQuat(in rP : double, in rPQ : double, i...

calcReducedPoints(in voxelSize : double) : void
createTrees(in use_cache : bool) : void

deleteTrees() : void

initCache(in Source : Scan, in Target : Scan) : KD...
getPtPairs(inout pairs : vector<PtPair>, inout Sou...

getPtPairsCache(inout pairs : vector<PtPair>, inou...

getPtPairsParallel(inout pairs : vector<PtPair>, i...

getPtPairsCacheParallel(inout pairs : vector<PtPai...

operator <<(inout os : ostream, in s : Scan) : ost...

operator <<(inout os : ostream, in matrix : double...

get_points_red_size() : int

resetPose() : void

readScans(in type : reader_type, in start : int, i...
get_points() : vector<Point>

get_points_red() : double

createTree(in use_cache : bool) : void

deleteTree() : void

Figure A.9: UML class diagram of Cartesian point cloud representation in 6DSLAM library.
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¥

squareDistanceToClosestCorrespondence(in xO : floa...

CMetricMap CPointsMap
+ m_disableSaveAs3DObject : bool # m_parent : CMuliMetricMap
+ clear() : void # x:float
+ iSEmpty() : bool # y:float
+ insertObservation(in obs : CObservation, in robotP... — ¥ 2:foat
+ th3D(in otherMap : CMetri in.. # pointWeight : uint32_t
+ te3D atioin otherMap : CI e # m_largestDistanceFromOrigin : float
+ i ionToFile(in # m_largestDistanceFromOriginlsUpdated : bool
+ getAs3DObje outOb; : t0fO... # m_KDTreeDatalsUpdated : bool

+

COLOR_3DSCENE _R : float
COLOR_3DSCENE_G : float
COLOR_3DSCENE_B : float

+

o

=

build_kdTreeaD() : void

+

kdTreeNClosestPoint3D(in x0 : float, in yO : float..

——|+ loadF :col DRan...
+ load3D_from_text_file(in file : std::string) : boo...
+ save3D_to_text file(in file : std::string) : bool
+ i ToFile(in
+ clear() : void
+ size() :size_t
+ getPointsCount() : size_t
+ getPoint(in index : size_t, inout x : float, inout...
+ setPoint(in index : size_t, inout p : CPoint3D) : ...
+ getAllPoints(inout xs : std::vector<float>, inout ...
+ insertPoint(in p : CPoint3D) : void -
1 <<friend>> + setAllPoints(in X : vector_float, in Y : vector fl... <<friend>> '
'
! + isEmpty() : bool '
'
| + getAs3DObj outobj : 1010, '
'
! + i otherMap : G [ \
' '
' '
! '
! '
! '
! '
! '
! '
! '
! '
' '
v AV
CSimplePointsMap CColouredPointsMap
+ ~CSimplePointsMap() # m_min_dist : vector_float
+ CSimplePointsMap() + ~CColouredPointsMap()
+ copyFrom(in obj : CPointsMap) : void + copyFrom(in obj : CPointsMap) : void
+ loadF i - COt DRan... + loadFromRangeScan(in rangeScan : CObservation2DRan...
+ load3D_from_text_file(in file : std:string) : boo... + load3D_from_text file(in file : std::string) : boo...
+ clear() : void + save3D_and_colour_to_text_file(in file : std::stri...
+ fuseWith(inout otherMap : CPointsMap, in minDistFo... + clear() : void
. otherMap : CPointsMap, in o... + fuseWith(inout otherMap : CPointsMap, in minDistFo...
+ setPoint(in index : size_t, inout p : CPoint3D) : ... + setPoint(in index : size_t, inout p : CPoint3D) : ...
+ setPoint(in index : size_t, in x : float, iny : f... + setPoint(in index : size_t, in x :float, iny : ...
+ insertPoint(in x : float, in y : float, in z : flo... + insertPoint(in x : float, in y : float, in z : flo...
+ insertPoint(in new_pnt : mrpt::math::TPoint3D) : v... + insertPoint(in p : CPoint3D) : void
o amER ke bool: + applyD mask : std:: bool.
+ insertObservation(in obs : GObservation, in robotP... + insertPoint(in x : float, iny : fioat, in z : fo...
+ computeO in obs : COl + insertObservation(in obs : CObservation, in robotP...
+ auxParticleFilterCleanUp() : void + computeObservationLikelihood(in obs : CObservation...
+ reserve(in newLength : size_t) : void + auxParticleFilterCleanUp() : void
+ setAllPoints(in X : vector _float, in Y : vector fl... + reserve(in newLength : size_t) : void
+ setAllPoints(in X : vector_float, in Y : vector_fl...
+ getAs3DOI outObj : :CSetOfO.
+ colourFromObservation(in obs : CObservationlmage, ...
+ resetPointsMinDist(in defValue : float = 2000.0f) ...

Figure A.10: UML class diagram of Cartesian point cloud representation in MRPT library.

cicP

+ CalculateOptimalTransformation(in pSourcePoints : Vec3d, in pTargetPoints : Vec3d, in nPoints : int, inout rotation : Mat3d, inout translation : Vec3d) : bool

Figure A.11: UML class diagram of Cartesian point cloud representation in IVT library.
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CcCartesianCloud3D

- _vPoints : StrCartesianPoint3D*
- _vinfo : StrPointInfo*

- _nHaslnfo : int

- _mSourcelnfo : int, long

- _adTranslation : double

- _rotPoint : StrCartesianPoint3D
- _mRotationMatrix : CMatrix44

- _bForceUserDefined : bool

- _fPointSize : float

+ create(in unPoints : uint, in bHaslInfo : bool) : C...

+ createSubCloud(inout pvldx : vector<unsigned int>)...
+ operator [|(in i : uint) : StrCartesianPoint3D

+ getPoint(in i : uint) : StrCartesianPoint3D

+ getinfo(in i : uint) : StrPointInfo

+ getRawCoordinates(inout pdBuffer : double) : void

+ copy(inout cloud : CCartesianCloud3D) : void

+ getCartesianCoordinates(inout ppdCloud : double) :...
+ haslnfo() :int

+ hasSourcelnfo() : int

+ add(inout point : StrCartesianPoint3D, inout info ...

+ addSourcelnfo(in eSourcelnfo : EnumSourcelnfo, in ...
+ getSourcelnfo(in eSourcelnfo : EnumSourcelnfo, ino...
+ removeSourcelnfo(in eSourcelnfo : EnumSourcelnfo) ...
+ removelnvalidPoints() : void

+ clearSourcelnfo() : void

+ size() : uint

+ getCentroid() : StrCartesianPoint3D

+ getCentroidValidPoints() : StrCartesianPoint3D

+ transform(inout matrix : fair::CMatrix44) : void

+ createTransform(inout matrix : CMatrix44) : CCarte...
+ getReducedPoints(inout cloud : CCartesianCloud3D, ...
+ clear() : void

+ erase() : void

+ serialize(inout stream : IQutputStream) : void

+ load(inout stream : lInputStream) : CCartesianClou...
+ setTranslationVector(inout dTranslation : double) ...

+ getTranslationVector() : double

+ setRotationPoint(inout point : StrCartesianPoint3D...

+ getRotationPoint() : StrCartesianPoint3D

+ setRotationMatrix(inout matrix : CMatrix44) : void...

+ getRotationMatrix() : CMatrix44

+ setPointSize(in fPointSize : float) : void

+ getPointSize() : float

+ setColor(inout pfColor : float) : void

+ dump() : void

+ getViewVectors(inout pCloud : CCartesianCloud3D) :...
+ setValid(in bValid : bool) : void

Figure A.12: UML class diagram of Cartesian point cloud representation in FAIR library.
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ros::Message

T

PointCloud

+ header : roslib::Header
+ pts : robot_msgs::Point32

+ chan : robot_msgs::ChannelFloat32

+

PointCloud()

+

PointCloud(in copy : PointCloud)

+

operator =(in copy : PointCloud) : PointCloud

+

~PointCloud()

+ __s getDataType() : std::string

+ __s_getMD5Sum() : std::string

+ __s_getMessageDefinition() : std::string
+ __getDataType() : std::string

+ __getMD5Sum() : std::string

+ Definition() : std::string

+ set_pts_size(in __ros_new_size : uint32_t) : void

+ get_pts_size() : uint32_t

+ get _pts_vec(inout __ros_vec : std::vector<robot_ms...
+ set_pts_vec(in __ros_vec : std:ivector<robot_msgs:...
+ set_chan_size(in __ros_new_size : uint32_t) : void...
+ get_chan_size() : uint32_t

+ calc_chan_array_serialization_len() : uint32_t

+ get_chan_vec(inout __ros_vec : std::vector<robot_m...

+ set_chan_vec(in __ros_vec : std::vector<robot_msgs...

+

serializationLength() : uint32_t

+

serialize(inout write_ptr : uint8_t, in seq : uint...

+

deserialize(inout read_ptr : uint8_t) : uint8_t

Figure A.13: UML class diagram of Cartesian point cloud representation in ROS.
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PointSet

PassStructure(inout inputPointSet : Self) : void
Initialize(in : void) : void

GetNumberOfPoints(in : void) : ulong
SetPoints(inout : PointsContainer) : void
SetPointData(inout : PointDataContainer) : void
SetPoint(in : Pointldentifier, in : PointType) :...
GetPoint(in : Pointldentifier, inout : PointType...

+ GetPointData(in : Pointldentifier, inout : Pixel...

+ GetBoundingBox(in : void) : BoundingBoxType

+ FindClosestPoint(inout : CoordRepType, inout poin...

+ UpdateOutputinformation() : void

+ Graft(in data : DataObject) : void

+ RequestedRegionlsOutsideOfTheBufferedRegion() : bo...
+ VerifyRequestedRegion() : bool

+ SetRequestedRegion(inout data : DataObject) : void...

+ SetBufferedRegion(in region : RegionType) : void

# PrintSelf(inout os : std::ostream, in indent : Ind...

operator =(in : Self) : void

Figure A.14: UML class diagram of Cartesian point cloud representation in ITK library.

PointMatching

v o+ + 4

ComputeSimilarityMatchMatrix(inout res : Matrix44x, inout Pfix : std::vector<Point3x>, inout Pmov : std::vector<Point3x>) : bool

ComputeRigidMatchMatrix(inout res : Matrixd4x, inout Pfix : std:vector<Point3x>, inout Pmov : std:vector<Point3x>) : bool

GomputeRigidMatchMatrix(inout res : Matrixd4x, inout Pfix : std:vector<Pointx>, inout Pmov : std:vector<Point3x>, inout q : Quaternionx, inout tr : Point3x) : bool
ComputeMatchMatrix(inout res : Matrixd4x, inout Ps : int3x>, inout Ns : inout Pt : ) : bool

Figure A.15: UML class diagram of Cartesian point cloud representation in Meshlab.
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A.1.3 Tringle mesh representations in existing libraries

vikCell

Pointlds : vikldList

Bounds : double

GetCellType() : int

GetPoints() : vikPoints
GetNumberOfPoints() : vikldType
GetNumberOfEdges() : int
GetNumberOfFaces() : int
GetPointids() : vikldList
GetBounds(in bounds : double) : void

GetLength2() : double

Points

vtkPoints

Bounds : double

ComputeTime : vikTimeStamp

paN

SetData(inout : vtkDataArray) : void Data

vikDataArray

LookupTable : vikLookupTable

GetDatal) : vikDataArray
SetDataType(in dataType : int) : void
GetPoint(in id : vikldType) : double

SetPoint(in id : vikldType, in x : double, in y : double, in...

VvikTriangle

PrintSelf(inout os : ostream, in indent : vikindent) : void
GetEdge(in edgeld : in) : vikCell

GetCellDimension() : int

GetNumberOfEdges() : int

GetNumberOfFaces() : int

GetFace(in : nt) : vikCell

Triangulate(in index :int, inout ptlds : vikldList, inout p.

Range : double

InsertNextTuple(in ] : vikidType, inout source : vikAbstract.

GetTuples(in p1 : vikidType, in p2 : vikidType, inout output...

vtkLine

Line GetCellDimension() : int

OfEdges() : int
GetNumberOfFaces() : int

GetEdge(in :int) : vikCell

PrintSelf(inout os : ostream, in indent : vikindent) : void

GetEdgeArray(in edgeld : int) :int Line
T index : int, inout ptids : vikidList, inout p.
TriangleCenter(in p1 : double, in p2 : double, in p3 : doub.
TriangleArea(in p1 : double, in p2 : double, in p3 : double) Line
GomputeNormal(inout p : vtkPoints, in numPts :int, inout pt
Triangle /l\ Triangle
VikPolyData
VikUnstructuredGrid PolyVertex : vikPolyVertex

PolyVertex : vikPolyVertex
PolyLine : vikPolyLine
Pixel : vikPixel

Polygon : vikPolygon
Tetra : vtkTetra

Voxel : vikVoxel

Wedge : vikWedge
Pyramid : vikPyramid
Connectivity : vtkCellArray

Links : vikCellLinks

PolyLine : vikPolyLine
Polygon : vikPolygon
EmptyCell : vikEmptyCell
Verts : vikCellArray

Lines : vikCellArray
Polys : vikCellArray
Strips : vikCellArray
Dummy : vikCellArray
Cells : vikCellTypes

Links : vikCellLinks

GetMaxCellSize() : int

IsHomogeneous() : int

GetData(inout info th

InsertNextCell(in type : int, in npts : vikIdType, inout pts...

InsertNextLinkedCell(in type : int, in npts : int, inout pts...

GetCell(in cellld : vikldType, inout cell : vikGenericCell ...

PrintSelf(inout os : ostream, in indent : vikindent) : void
GetCellNeighbors(in cellld : vikidType, inout ptids : vikIdL..
SetVerts(inout v : vikGellArray) : void

GetVerts() : vikCellArray

SetLines(inout | : vikCellArray) : void

GetLines() : vikCellArray

Figure A.16: UML class diagram of triangle mesh representabn in VTK.

rOfPolys() : vtkidType

InsertNextCell(in type : int, in npts : int, inout pts : vik
InsertNextCell(in type : int, inout pts : vtklaList) :int
DeleteCells() : void

IsTriangle(in v1 :int, in v2 :int, in v3 : int) : int
DeletePointlin ptld : vikidType) : void
InsertNextLinkedPoint(in numLinks : int) :int
InseriNextLinkedPoint(in x : double, in numLinks :int) :in...
InsertNextLinkedCell(in type : int, in npts : int, inout pts.

GetDatainout info : viklnformation) : vikPolyData
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_v : ScalarType

Triangle3()

P(inj :int) : CoordType
PO(in j : int) : CoordType
P1(inj : int) : CoordType
P2(in j : int) : CoordType
P(inj :int) : CoordType
PO(in j : int) : CoordType
P1(inj :int) : CoordType
P2(in j : int) : CoordType
cPO(in j : int) : CoordType
cP1(in j : int) : CoordType
cP2(in j : int) : CoordType

QualityFace() : ScalarType

Triangle3(in c0 : CoordType, in c1 : CoordType, in c2 : Coor...

InterpolationParameters(in bq : CoordType, inout a : ScalarT...

Point3

Point3(in nx : Scalar, in ny : Scalar, in nz : Scalar)
Point3(in p : Point3)

Point3(in nv : Scalar)

Point3(in other : Eigen::MatrixBase<OtherDerived>)
Construct(in PO : Q, in P1:Q, in P2 : Q) : Point3

GetBBox(inout bb : veg::Box3<_Scalar>) : veg::Box3<_Scalar>

Figure A.17: UML class diagram of triangle representation n Meshlab.

TriMeshEdgeHolder

o

<VertContainerType->VertContainerType, FaceComainerType->FaceComa\nérType, EdgeContainerType->EdgeConts>

Figure A.18: UML class diagram of triangle mesh representaibn in Meshlab.

<<bind>>
* 3 VertContainerType, FaceContainerType, EdgeConts
TriMesh
vn :int
fn sint
en :int

textures : std::string
normalmaps : std::string
attrn :int

¢ : Colordb

imark : int

C() : Colordb

C() : Colordb
TriMesh()

~TriMesh()

Mem(in nv :int, in nf :int) : int
MemUsed() : int
MemNeeded() : int
Clear() : void
SimplexNumber() : int
VertexNumber() : int
InitFacelMark() : void
InitVertexIMark() : void
IMark() : int

IsMarked(in v : ConstVertexPointer) : bool

IsMarked(in f : ConstFacePointer) : bool

Mark(in v : VertexPointer) : voi
Mark(in f : FacePointer) : void
UnMarkAll() : void

Volume() : ScalarType

id
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Figure A.19: UML class diagram of triangle mesh representaibn in Gmsh library.
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<<struct>>

facetT

previous

next

furthestdist : coordT
maxoutside : coordT
offset : coordT
normal : coordT

f : <complex type>
center : coordT
visitid : uint

id : uint

nummerge : uint
tricoplanar : flagT
newfacet : flagT
visible : flagT
toporient : flagT
simplicial : flagT
seen : flagT

seen2 : flagT
flipped : flagT
upperdelaunay : flagT
notfurthest : flagT
good : flagT

isarea : flagT
dupridge : flagT
mergeridge : flagT
mergeridge2 : flagT
coplanar : flagT
mergehorizon : flagT
cycledone : flagT
tested : flagT
keepcentrum : flagT
newmerge : flagT
degenerate : flagT

redundant : flagT

vertices

neighbors

<<struct>>

vertexT

previous

next

SN

neighbors

<<struct>>
\ setT
coplanarset
maxsize : int
ridges
outsideset
1] e
<<union>>
setelemT
p : void
i:int

point : pointT
visitid : uint

id : uint

seen : flagT
seen2 : flagT
delridge : flagT
deleted : flagT

newlist : flagT

Figure A.20: UML class diagram of triangle mesh representabn in Qhull library.
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Vector3

Vector3()

Vector3(in x : double, in y : double, in z : double)
Vector3(in coords : Array3)

operator +=(in rhs : Vector3) : Vector3

operator -=(in rhs : Vector3) : Vector3

operator *=(in s : double) : Vector3

operator *(in s : double) : Vector3

operator /=(in s : double) : Vector3

operator /(in s : double) : Vector3

Iriangle p1 | operator () : Vector3
Triangle( ’_/> length() : double '
. —<typedef>>
Triangle(in v : Vector3, in v2 : Vector3, in v3 : Vector3) p2 | squaredLength() : double m_coords

normalize() : void Array3

<

getArea() : double

P3| normalized() : Vector

getNormal() : Vector3

"

getTurnAngle(in cec1 : Vector3, in vec2 : Vector3, in normal...
() : double
y() : double
z() : double
x() : double

getCentroid() : Vector3

y() : double

2() : double

operator [](in i : uint) : double
operator [J(in i : uint) : double
asArray() : double

setCoords(in coords : Array3) : void

setCoords(in x : double, iny : double, in z : double) : voi...

Figure A.21: UML class diagram of triangle mesh representaibn in CoPP and BRICS. MM
library.

<<struct>>
TRIANGLE
vi
TRIANGLE() v <<typedef>>
TRIANGLE(in v1 : Vector, in v2 : Vector, in v3 : Vector) Vector
~TRIANGLE() v8

operator [|(in'i : int) : Vector
operator [|(ini : int) : Vector

ComputeNormal() : Vector

Figure A.22: UML class diagram of triangle representation n openrave library.

<<struct>>
TRIMESH
indices : vector<int>
ApplyTransform(in t : Transform) : void vertices <<typedef>>
ApplyTransform(in t : TransformMatrix) : void Vector
<<vector>>
Append(in mesh : TRIMESH) : void

Append(in mesh : TRIMESH, in trans : Transform) : void
ComputeAABB() : AABB

serialize(inout o : std::ostream, in options : int) : void

Figure A.23: UML class diagram of triangle mesh representabn in openrave library.
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Shape

Shape()

Shape(in sa : Shape, in copyop : CopyOp = CopyOp::SHALLOW_CO...
cloneType() : Object

clone(in : CopyOp) : Object

isSameKindAs(in obj : Object) : bool

libraryName() : char

className() : char

accept(inout : ShapeVisitor) : void

accept(inout : ConstShapeVisitor) : void

~Shape()

Array

TriangleMesh

_indices
TriangleMesh() IndexArray

<<ref_ptr>>

TriangleMesh(in mesh : TriangleMesh, in copyop : CopyOp = Co...

setVertices(inout vertices : Vec3Array) : void
getVertices() : Vec3Array
getVertices() : Vec3Array

setIndices(inout indices : IndexArray) : void . <<typedef>>
_vertices

getindices() : IndexArray

Vec3Array  f-------5
getindices() : IndexArray

<<typedef>>

Vec3

~TriangleMesh()

Figure A.24: UML class diagram of triangle mesh representabn in OSG library.

Shape

Shape(in : void)
~Shape(in : void)

Mesh

vertexCount : uint
vertices : double
triangleCount : uint
triangles : uint

normals : double

Mesh(in : void)
Mesh(in vCount : uint, in tCount : uint)

~Mesh(in : void)

Figure A.25: UML class diagram of triangle mesh representabn in ROS.
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A.2 Implementation details

A.2.1 Implementation of harmonized data-types

<<typedef>>

Coordinate

Figure A.26: UML class diagram of harmonized Cartesion poir representation.

Point3D

Point3D()

Point3D(x : Coordinate, y : Coordinate, z : Coordinate)
Point3D(point : Point3D)

~Point3D()

getX() : Coordinate

getY() : Coordinate

getZ() : Coordinate

setX(x : Coordinate) : void

setY(y : Coordinate) : void

setZ(z : Coordinate) : void

getRawData(pointBuffer : Coordinate) : void

operator +(point : Point3D) : Point3D

operator -(point : Point3D) : Point3D

operator *(scalar : double) : Point3D

operator =(point : Point3D) : Point3D
homogeneousTransformation(transformation : IHomogeneousMatrix44) : void
operator >>(inStream : istream, point : Point3D) : istream

operator <<(outStream : ostream, point : Point3D) : ostream

point

?

Point3DDecorator

Point3DDecorator(point : Point3D)
~Point3DDecorator()

getX() : Coordinate

getY() : Coordinate

getZ() : Coordinate

setX(x : Coordinate) : void

setY(y : Coordinate) : void

setZ(z : Coordinate) : void

getRawData(pointBuffer : Coordinate) : void

operator =(point : Point3D) : Point3D

operator +(point : Point3D) : Point3D

operator -(point : Point3D) : Point3D

operator *(scalar : double) : Point3D
homogeneousTransformation(transformation : IHomogeneousMatrix44) : void
operator >>(inStream : istream, point : Point3D) : istream
operator <<(outStream : ostream, point : Point3D) : ostream
decorate(point : Point3D) : void

getPoint() : Point3D

%

ColoredPoint3D

red : byte
green : byte

blue : byte

ColoredPoint3D(point : Point3D)

ColoredPoint3D(point : Point3D, red : byte, green : byte, blue : byte)
ColoredPoint3D(point : ColoredPoint3D)

~ColoredPoint3D()

operator >>(inStream : istream, point : ColoredPoint3D) : istream

operator <<(outStream : ostream, point : ColoredPoint3D) : ostream
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IHomogeneousMatrix44

IHomogeneousMatrix44()

~IHomogeneousMatrix44()

getRawData() : double

setRawData() : double

operator *(matrix : IHomogeneousMatrix44) : IHomogeneousMatrix44
operator =(matrix : IHomogeneousMatrix44) : IHomogeneousMatrix44

operator <<(outStream : ostream, matrix : IHomogeneousMatrix44) : ostream

3

HomogeneousMatrix44

matrixElements : int

matrixData : double

HomogeneousMatrix44(r0 : double, r1 : double, r2 : double, r3 : double, r4 : dou...
HomogeneousMatrix44(homogeneousTransformation : Eigen::Transform3d)
~HomogeneousMatrix44()

getRawData() : double

setRawData() : double

operator *(matrix : IHomogeneousMatrix44) : IHomogeneousMatrix44

operator *=(matrix : IHomogeneousMatrix44) : IHomogeneousMatrix44

operator =(matrix : IHomogeneousMatrix44) : IHomogeneousMatrix44

operator <<(outStream : ostream, matrix : IHomogeneousMatrix44) : ostream

Figure A.27: UML class diagram of homogeneous transformatin matrix.

PointCloud3D

PointCloud3D()

~PointCloud3D()

addPoint(point : Point3D) : void

getPointCloud() : std::vector<Point3D>

setPointCloud(pointCloud : std::vector<Point3D>) : void

getSize() : uint

storeToPlyFile(filename : std::string) : void

storeToTxtFile(filename : std::string) : void
readFromTxtFile(filename : std::string) : void

operator >>(inStream : istream, pointCloud : PointCloud3D) : istream
operator <<(outStream : ostream, pointCloud : PointCloud3D) : ostream

homogeneousTransformation(transformation : IHomogeneousMatrix44) : void

pointCloud

Point3D

Figure A.28: UML class diagram of harmonized Cartesion poir representation.

<<vector>>
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ITriangleMesh
ITriangleMesh()
~ITriangleMesh()
getSize() : int
getNumberOfVertices() : int
getTriang| i cint, < int) : Point3D

addTriangle(vertex1 : Point3D, vertex2 : Point3D, vertex3 : Point3D) : int

removeTriangle(triangleindex : int) : void

Tr el ) : void
operator >>(inStream : istream, mesh : ITriangleMesh) : istream
operator <<(outStream : ostream, mesh : ITriangleMesh) : ostream
read(inStream : std::istream) : void
write(outStream : std::ostream) : void
?
TriangleMeshimplicit TriangleMeshExplicit
indices : std::vector<int> Th icit)

TriangleMeshImplicit()

~TriangleMeshImplicit()

getVertices() : std::vector<Point3D>
setVertices(vertices : std::vector<Point3D>) : void
getindices() : std::vector<int>

setIndices(indices : std::vector<int>) : void
getSize() : int

getNumberOfVertices() : int

getTriang| :int, vertexIndex : int) : Point3D

removeTriangle(trianglelndex : int) : void

homogeneousT i mati

read(inStream : std::istream) : void

write(outStream : std::ostream) : void

addTriangle(vertex1 : Point3D, vertex2 : Point3D, vertex3 : Point3D) : int

< void

~TriangleMeshExplicit()

getTriangles() : std::vector<Triangle>

setTriangles(triangles : std::vector<Triangle>) : void

getSize() : int

getNumberOfVertices|() : int

getTriangleVertex(triangleindex : int, vertexIndex : int) : Point3D
addTriangle(vertex1 : Point3D, vertex2 : Point3D, vertex3 : Point3D) : int
addTriangle(triangle : Triangle) : int

removeTriangle(trianglelndex : int) : void

<<vector>>

operator <<(outStream : ostream, triangle : Triangle) : ostream

t T i ion : 1H; ix44) : void
read(inStream : std::istream) : void
write(outStream : std::ostream) : void
<<vector>>
triangles
Triangle

Triangle()
Triangle(triangle : Triangle)
Triangle(vertex1 : Point3D, vertex2 : Point3D, vertex3 : Point3D)
~Triangle()
getVertex(vertexindex : int) : Point3D
setVertex(vertexindex : int, vertex : Point3D) : void

Trar i ion : IH M. < void

Figure A.29: UML class diagram of harmonized Cartesion poir representation.

vertices PointaD vertices

31
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A.2.2 Implementation of components

IOctreeSetup

IOctreeReductionFilter

|OctreeReductionFilter()
~lOctreeReductionFilter()

reducePointCloud(originalPointCloud : PointCloud3D, resultPointCloud : PointCloud3D) : void

1OctreeSetup()
~|OctreeSetup()
setVoxelSize(voxelSize : double) : void

getVoxelSize() : double

T

voxelSize : double

Octree()
~Octree()

setVoxelSize(voxelSize : double) : void

getVoxelSize() : double

reducePointCloud(originalPointCloud : PointCloud3D, resultPointCloud : PointCloud3D) : void

|OctreePartition()
~|OctreePartition()

partitionPointCloud(pointCloud : PointCloud3D, pointCloudCells : std::vector <PointCloud>) : void

Figure A.30: UML class diagram of Octree component implemetation.
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literativeClosestPoint

IIiterativeClosestPoint()
~|lterativeClosestPoint()

match(model : PointCloud3D, data : PointCloud3D, resultTransformation : IHomogeneousMatrix44) : void

PaN
literativeClosestPointSetup
IiterativeClosestPointDetailed
literativeClosestPointSetup()
IlterativeClosestPointDetailed() ~llterativeClosestPointSetup()
~llterativeClosestPointDetailed() getConvergenceThreshold() : double
setData(data : PointCloud3D) : void getMaxiterations() : int
setModel(model : PointCloud3D) : void setConvergenceThreshold(convergenceThreshold : double) : void
getData() : PointCloud3D setMaxlterations(maxlterations : int) : void
getModel() : PointCloud3D setAssigner(assigner : IPointCorrespondence) : void
performNextlteration() : double setEstimator(estimator : IRigidTransformationEstimation) : void
getlastEstimatedTransformation() : IHomogeneousMatrix44 getAssigner() : IPointCorrespondence
getAccumulatedTransfomation() : IHomogeneousMatrix44 getEstimator() : IRigidTransformationEstimation

IterativeClosestPoint

maxlterations : int

convergenceThreshold : double

IterativeClosestPoint()

~IterativeClosestPoint()

match(model : PointCloud3D, data : PointCloud3D, resultTransformation : IHomogeneousMatrix44) : void
getConvergenceThreshold() : double

getMaxlterations() : int
setConvergenceThreshold(convergenceThreshold : double) : void
setMaxlterations(maxlterations : int) : void

getAssigner() : IPointCorrespondence

getEstimator() : IRigidTransformationEstimation
setAssigner(assigner : IPointCorrespondence) : void
setEstimator(estimator : IRigidTransformationEstimation) : void
setData(data : PointCloud3D) : void

setModel(model : PointCloud3D) : void

getData() : PointCloud3D

getModel() : PointCloud3D

performNextlteration() : double
getlLastEstimatedTransformation() : IHomogeneousMatrix44

getAccumulatedTransfomation() : IHomogeneousMatrix44

IterativeClosestPoint(assigner : IPointCorrespondence, estimator : IRigidTransformationEstimation, convergenceThreshold : double, maxlterations : int)

estimator assigner

IRigidTransformationEstimation IPointCorrespondence

Figure A.31: UML class diagram for Iterative Closest Point omponent implementation.
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IPointCorrespondence

IPointCorrespondence()

~|PointCorrespondence()

createNearestNeighborCorrespondence(pointCloud1 : PointCloud...

éﬁ

PointCorrespondenceKDTree

PointCorrespondenceGenericNN

PointCorrespondenceKDTree()
~PointCorrespondenceKDTree()

createNearestNeighborCorrespondence(pointCloud1 : PointCloud...

PointCorrespondenceGenericNN()
PointCorrespondenceGenericNN(nearestNeighborAlgorithm : INea...
~PointCorrespondenceGenericNN()
createNearestNeighborCorrespondence(pointCloud1 : PointCloud...
getNearestNeighborAlgorithm() : INearestNeighbor
setNearestNeighborAlgorithm(nearestNeighborAlgorithm : INear...

nearestNeighborAlgorithm

INearestPoint3DNeighbor

INearestPoint3DNeighbor()
~INearestPoint3DNeighbor()
setData(data : PointCloud3D) : void

findNearestNeigbor(query : Point3D,

k :int) : vector<int>

Figure A.32: UML class diagram for Point Correspondence corponent implementation.

IRigidTransformationEstimation

IRigidTransformationEstimation()

~IRigidTransformationEstimation()

estimate Transformation(pointPairs : std::vector<CorrespondencePoint3DPair>, resultTransformation : IHomogeneousMatrix44) : double

AN

RigidTransformationEstimationSVD

RigidTransformationEstimationORTHO

RigidTransformationEstimationAPX

RigidTransformationEstimationQUAT

RigidTransformationEstimationHELIX

Figure A.33: UML class diagram for Rigid Transformation Estimation component imple-

mentation.
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INearestNeighbor

INearestNeighbor()
~INearestNeighbor()
setData(data : vector< vector<float> >) : void

setData(data : vectors vector<double> >) : void

INearestNeighborSetup

INearestPoint3DNeighbor

dimension : int

maxDistance : double

INearestPoint3DNeighbor()
~INearestPoint3DNeighbor()

)
~INearestNeighborSetup()

getDimension() : int

. k :int) : vectorsint> setData(data : PointCloud3D) : void getMaxDistance() : double
, ke int) : vect findNearestNeigbor(query : Point3D, k : int) : vector<int> setMaxDistance(maxDistance : double) : void
paN paN
NearestNeighborANN NearestNeighborFLANN NearestNeighborSTANN
Keint dataMatrix : float nearestNeigborHandle : STANNPoint, STANNDimension, double
eps : double rows : int resultindices : long unsigned int
maxPts : int cols :int squaredResultDistances : double

dataPoints : ANNpointArray
queryPoint : ANNpoint
nnindex : ANNidxArray
distances : ANNdistArray
kdTree : ANNKd_tree

parameters : FLANNParameters
index_id : FLANN_INDEX

speedup : float

NearestNeighborANN()
~NearestNeighborANN()

setData(data : vector< vector<float> >) : void
setData(data : vector< vector<double> >) : void

setData(data : PointCloud3D) : void

K int) : vector<int:

.k tint) : vector<int>

findNearestNeigbor(query : Point3D, k : int) : vector<int>

NearestNeighborFLANN()
~NearestNeighborFLANN()

setData(data : vector< vector<float> >) : void
setData(data : vector< vector<double> >) : void
setData(data : PointCloud3D) : void

y K :int) : vector<int

Yy .k : int) : vector<int>
findNearestNeigbor(query : Point3D, k : int) : vector<int>

getParameters() : FLANNParameters

:FLAI < void

getSpeedupl) : float

k:long

NearestNeighborSTANN()
~NearestNeighborSTANN()

setData(data : vector< vector<float> >) : void
setData(data : vector< vector<double> >) : void
setData(data : PointCloud3D) : void

findNearestNeigbor(query : vector<float>, k : int) : vector<ints

double>, k : int) : vector<int>

findNearestNeigbor(query : Point3D, k : int) : vector<int>

Figure A.34: UML class diagram for k-Nearest Neighbor search component implementa-
tion. Note that all implementations inherit from the three abstract interfaces.

IDelaunayTriangulation <<enum>>
IDelaunayTriangulation() axis
~IDelaunayTriangulation() X @ axis
triangulate(pointCloud : PointCloud3D, mesh : ITriangleMesh, ignore : axis) : void y axis
triangulate(pointCloud : PointCloud3D, tetrahedrons : ITetrahedronSet) : void z: axis

DelaunayTriangulationOSG

DelaunayTriangulationOSG()
~DelaunayTriangulationOSG()

triangulate(pointCloud : PointCloud3D, mesh : ITriangleMesh, ignore : axis) : void

Figure A.35: UML class diagram for Delaunay Triangulation component implementation.
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