
Best Practice in Robotics (BRICS)
Grant Agreement Number: 231940

01.03.2009 - 28.02.2013

Instrument: Collaborative Project (IP)

Robust autonomy

Yury Brodskiy, Stefano Stramigioli, Jan Broenink,
Peter Bredveeld, Cagri Yalcin

Deliverable: D6.1

Lead contractor for this deliverable: University of Twente.
Due date of deliverable: November 01, 2010
Actual submission date: October 19, 2010
Dissemination level: Public
Revision: 0.01

Contents

1 Introduction 2

2 Background information 3

2.1 Basic concepts . 3

2.2 Definition of robust autonomy . 3

3 Evaluation criteria 5

3.1 Model of autonomous fault tolerance . 5

3.2 Information acquisition and analysis . 6

3.3 Decision and action selection . 7

3.4 Action implementation . 8

3.5 Conclusions . 9

4 Fault forecasting 10

5 Design guidelines 14

5.1 Design for robust autonomy . 14

5.2 Architectural problem . 15

5.3 Detection problem . 16

5.4 Recovery problem . 18

6 Use cases 21

6.1 Robot drive failure – Omni wheels . 21

6.2 Robot arm failure – Reducing working envelop . 21

6.3 Path planner failure – N-version programming . 21

7 Conclusion 22

Bibliography 23

ii BRICS Deliverable D6.1

Executive summary

Deliverable D6.1 provides specifications for the research performed in Work Package 6 (Robust
Autonomy) of the European research project BRICS. The main purpose of this document is to
review a number of techniques to increase robots’ level of robust autonomy and to give rec-
ommendations on how to better start tackling the issues within the BRICS project. The cross
sectional nature of the WP6 is reflected in this work by addressing a subject of robots robust
autonomy in the development process, architectures(Software&Hardware) and algorithms.

More specifically the deliverable contains initial results on the task 6.4 “Design principles, im-
plementation guidelines, and evaluation criteria for robust autonomy”. The main goal of the
task is to define the best methods and design patterns to achieve robust autonomy. The initial
steps towards this goal is done by reviewing and combining the results obtained in the de-
pendable computing research field and experience from the design of safety critical systems.
The results from task 6.1 “Inventory and classification” are used to create a coherent overview
of the field. The proposed directions of future research are cooperative recovery support in
robots’ architecture, development of reusable detection and recovery components.

The deliverable also contains midterm results of the results on task 6.2 “Identification of criteria
for robust autonomy”. Herein is a proposal for the number of metrics that allow to identify the
level of robust autonomy. The metrics are developed based on the concept of the ‘human-
centered automation’ applied to abnormal event management process.

BRICS Deliverable D6.1 1

1 Introduction

The development of the mobile manipulation robots that can perform its duties for a long time
in an unstructured environment with a limited human assistance is of particular interest to the
robotic community. The BRICS project addresses this interest by developing the methodology,
the framework and the tool-chain for such applications. One of the important facets of such a
methodology is a support for a controllable investment into robustness of robots autonomy.

It is necessary to define the basic concepts applicable for robots robust autonomy. Definitions
of the basic concepts will help the communication and the cooperation among scientific and
technical communities during development of a system with an explicit level of robust auton-
omy. This is addressed by developing a crisp one sentence definition of robust autonomy and
identifying relations with a similar research field in Chapter 2.

A robot development should be structured in a way that reveals decisions that affect non-
functional requirements such as robust autonomy. The engineering process can be described
as a combination of design procedures and artefacts (deliverables). An artefact is the most ex-
plicit way to ensure fulfilment of the requirements. Therefore, it is good practice to include
robust autonomy requirements in it. The evaluation criteria of robust autonomy presented in
Chapter 3 are aimed to support this practice. The design procedures that allow to fulfil the re-
quirements of robust autonomy are reviewed in Chapter 4; it also contains a taxonomy of faults
that could be used as a support for the design procedures.

The developments in the dependable computing research field and safety critical system de-
sign provide numerous techniques that are applicable to robotics robust autonomy. The review
is presented in Chapter 5. The initial guidelines and challenges for the architecture that will
support the autonomous and robust behaviours of the system are presented in section 5.2. The
taxonomies of algorithmic solutions for robust autonomy are presented in sections 5.3, 5.4.

2 BRICS Deliverable D6.1

2 Background information

2.1 Basic concepts

In section 2.2, it will be shown that robust autonomy is a super set of autonomous behaviours
and behaviours described by fault tolerance. A fault tolerance is a concept defined in depend-
able computing. The field of dependable computing is concerned with justification of trust
in software systems. Research in this area has produced a number of definitions that aim to
describe the processes of software failures. The developed definitions are elaborated in the
terms of system interaction and behaviours which make them general and applicable to other
spheres of engineering. The basic taxonomies and definitions of dependable computing have
been already described elsewhere [2],however it is convenient to include a brief account of it
here with emphasis to the robotic domain.

We discuss robot behaviour in term of system interaction. A system consists of a number of
mutually related parts that are relevant for the behaviour in which we are interested. It is an
elementary entity in this analysis. Everything outside the system is called an environment. The
barrier between system and environment is called system boundary. A system can be com-
pound, consist of several systems, or atomic. The system that uses a service of an other system
is called a user.

The behaviour of a robot can be analysed as hybrid discrete-continuous automata. Such sys-
tems have internal and external states. Sequences of external states are called system be-
haviours. The desired behaviours are called services. Other behaviours are called failures.
The cause of a failure is a fault. The important deviation in the study of robust autonomy is
the concept of acceptable service presented in the next section. It is the ability to retain some
functionality in the presence of faults. This concept is utilised as one of the metrics for robust
autonomy of the robot 3.4

Figure 2.1: Fault, error, failure propagation process [2]

A fault, an error and a failure propagation process is presented in figure 2.1. Any fault is a
deficiency in the system design. When a fault is active the system is transferred into an error
state. The error propagation in the system generates the failure to deliver the service. Using
these concepts we will elaborate the definition of robust autonomy.

2.2 Definition of robust autonomy

The autonomy in a robotic context is the potential of an intelligent man-made mechanism to
interact with its environment without human intervention in its decisions about this interac-
tion. The robustness of robot autonomy should be such that this interaction remains suffi-
ciently safe, accurate, etc. (i.e. within specifications) over a maintenance interval. [5]. Since
robust autonomy is a compound term , we find it necessary to clarify the meaning and rela-
tions to similar fields of research. Only few definitions could be found in the literature, more
often the expression has been used to reinforce the meaning of one part. For example, in the

BRICS Deliverable D6.1 3

2.2. DEFINITION OF ROBUST AUTONOMY

2001 AAAI Spring Symposium on Robust Autonomy, only one paper contains a description of
the term and 2 out of 20 papers contain indirect description of the term:

• “Robust autonomous systems will need to be adaptable to changes in the environment
and changes in the underlying physical system.” [16]

• “Robust autonomy on the part of software agents requires, at least in part, the ability to
deal intelligently with novel and unexpected situations.” [9]

• “One aspect of robust autonomy is the ability to react to faults and special conditions.”
[30]

As it can be seen, robust autonomy is mostly considered as ability of the system to react to
changes in the environment, unexpected situations or special conditions. The phenomenas
to which the system is supposed to react can be summarised as abnormal events, happenings
outside the normal workflow. Without special considerations the abnormal events become the
cause of the system failure. From this point of view, robust autonomy resembles the means to
achieve system dependability.

Future developments of the definition exhibit a lot of interrelations with the dependability
computing research. Correlation between fault tolerance and robustness for autonomous sys-
tems is discussed by Lussier which concludes that robustness and fault tolerance both char-
acterise the resilience of a system towards particular adverse situations; robustness charac-
terises resilience towards uncertainties of the environment, and fault tolerance characterises
resilience towards faults affecting the system resources.[20]. However this conclusive separa-
tion of the fault tolerance and robustness is self contradictory since the process of defining sys-
tem boundary is involved. Depending on system boundary definition the same mechanisms
will appear to be fault tolerance or robustness. This inconsistency is reflected in the following
statement of Lussier: “Development faults are hardly addressed by fault tolerant mechanisms
in autonomous systems; robustness techniques somewhat compensate this problem, but are
surely insufficient for critical applications.”[20]. Therefore we assume that robustness is a syn-
onym for fault tolerance.

As a requirement for an autonomous system Lussier et al. define the concept of "acceptable
service" since the operational field of the autonomous robot is an open environment where
unexpected adverse situations are inevitable, therefore, a correct service cannot be guaranteed.
This directly brings the need of alteration on the definition of a correct service given in the
context of traditional dependable systems. Hence, acceptable services corresponds to the less
successful versions of the correct services where less objectives are achieved. As a result, we see
the concept of an acceptable service as an important part of the robust autonomy definition.

We suggest that the need for additional mechanisms directly depends on the level of autonomy
and the related architectural constraints of the system. On the other hand, all of the above
descriptions contain the implicit assumption that an autonomous system operates without or
under limited human supervision. Taking this into account, the final definition to be used in
our context can be phrased as:

Robust autonomy is the ability of the system to react on both explicitly-specified adverse sit-
uations as well as unexpected adverse situations in both the environment and the underlying
system (hardware and software) without or under limited human guidance in order to com-
plete its mission in an acceptable way.

4 BRICS Deliverable D6.1

3 Evaluation criteria

3.1 Model of autonomous fault tolerance

The robust autonomy is a non-functional requirement and as such does not have well-defined
specifications or metrics. The foremost step in the development towards robustness for au-
tonomous robots is to determine the concepts that can be used for optimisation of design so-
lutions.

The amount of control that a robot has over its actions, reflects different levels of autonomy
[13]. The ability to prioritise and make decisions is a property of a system with a high-level of
autonomy. This ability becomes more apparent in the case of abnormal events. Exceptional
situations unforeseen by the main operation workflow, confront a robot with the challenge
of choice. For example, an automatic ground collision avoidance system (auto GCAS) on an
aircraft has a priority of the crew safety, which can override a direct command from the pilot
controls in case of a ground collision course [28]. In this case the automatic system exhibits the
highest level of autonomy, taking over the responsibility of making decisions.

The process of a robot service can be seen as a sequence of states of the system consisting of a
robot and the environment. During a normal workflow transitions between different states are
determined by certain pre-programmed behaviours. However, deviations due to irregularities
require an unpredicted switch in the behavioural model. Such a switch might require employ-
ing one of the predefined solutions or developing a new one based on the system goals and
constraints. The ability to independently detect abnormal events and to recover from them
makes a robot autonomous and robust. In essence, robust autonomy is the ability of a robot to
deal with abnormal situations with minimal human involvement [16, 27].

The metrics of robust autonomy can be identified through the analysis of processes taking
place in the system upon an event. An abnormal event is a violation of the operating assump-
tions and thus can be treated as an external fault on the boundary of the system consisting of
the robot components. Following Avizienis, [2] taxonomy of Dependable and Secure Comput-
ing, the fault handling can be modelled by two processes: fault detection and recovery from
it. Metrics of robust autonomy can be defined as a combination of characteristics of the fault
detection and recovery processes.

The field of service robotics is based on the idea of robots co-existing with humans; therefore,
the human-machine interaction aspect of robust autonomy should be quantified too. The con-
cept of ‘human-centered automation’ is based on the analysis of human information process-
ing and on the amount of tasks devoted to automated systems (robots). To provide a robot
with autonomy means to (partially) exclude the human operator from the robot’s exception
handling processes. By adding new levels of automation a designer creates a more indepen-
dent, and thus more autonomous robot. Every layer of automation, directed towards this goal,
provides a partial replacement or minimisation of human support. This implies that excluding
humans from robot exception handling is a gradual process.

Human actions intended to help a robot to solve an exceptional situation can be analysed by
means of a model of human information processing. A four-stage model was proposed by Para-
suraman to analyse levels of human interaction with automation. This model is oversimplified
and debatable, but it highlights the main activities and as such suffices for this kind of analysis
[24].

The correlation between this model of human information processing and the model of the
strategy for fault handling of Avizienis is displayed in figure 3.1. The information acquisition
and analysis is equivalent to fault detection. The recovery is corresponding to action selec-

BRICS Deliverable D6.1 5

3.2. INFORMATION ACQUISITION AND ANALYSIS

Figure 3.1: Correlation between human information processing and fault handling

Information acquisition

Information analysis

Decision and action selection

Action implementation

Fault Detection

Recovery

tion and implementation. Both models are competent but a human information processing
can provide more details. Based on the two models discussed above for abnormal event man-
agement we will define separate metrics for fault detection (section5.3), decision and action
selection (section3.3) and action implementation (section3.4).

3.2 Information acquisition and analysis

An important feature of an autonomous robot is its ability to detect when its normal workflow is
interrupted and to identify the cause of this interruption. Different types of Fault Detection and
Isolation (FDI) systems are employed to achieve it. The FDI system is responsible for the data
acquisition and analysis process. The system performs a transformation from raw sensory data
to a possible cause of failure. To evaluate the quality of this process, it is necessary to review the
characteristics of the FDI system. Similar analyses have been done for FDI systems in chemical
process engineering by Venkatasubramanian [29]. The resulting characteristics most relevant
to the robust autonomy of a robot can be summarised as follows:

The response speed is characterised by a time delay between a failure event and the system
response. In most robotic systems, this delay should be between certain boundaries.
The minimum response speed is determined by the dynamics of the system and by the
consequences of the failure. For example, in a simple detection system it is the delay
between deviation of the process parameters and detection of this deviation. Filtering
and thresholds, added to the system to avoid false detection, generally create this delay.

The robustness of the abnormal event management unit can be measured by the amount of
noise required to be put into the sensory data in order to trigger a false detection. A robot
performs its functions in an unstructured environment. This yields fluctuations of the
system states. The application must remain stable in presence of these disturbances,
since false detections can also jeopardise the system autonomy.

Isolability is the ability to identify a system part in which a fault has occurred. It can be mea-
sured as a percentage of the system that is considered faulty upon a given event. It is a
particularly important part of the information analysis process. In general, a robot is pre-
programmed for a certain number of behaviours, each addressing particular goals. In
order to select the correct action, it has to consider all constraints imposed by an abnor-
mal situation. For example, a robotic arm that has several sensors on a joint can isolate
failures of one without losing its performance. In case the arm has only one sensor per
joint, failure of the sensor requires isolation of the whole joint thus reducing the working
envelope.

Novelty identifiability is the ability of a system to detect new (unknown) faults that were not
defined at design time. If a system is constructed in a structured way with attention to
fault identification at every level of abstraction and component, it could isolate failed

6 BRICS Deliverable D6.1

3.3. DECISION AND ACTION SELECTION

Table 3.1: Levels of Decision and Action selection automation

A robot:
High 10. decides everything, ignoring a human

9. decides to inform a human or not
8. informs a human on request
7. informs a human after execution
6. gives a human time to cancel execution
5. requests approval before execution
4. suggests one alternative
3. offers a prioritised list of actions
2. offers complete information on its status

Low 1. offers no assistance: a human takes decisions

elements without a priori knowledge of the cause. The metrics can be measured the
same way as isolability but for new (unknown) faults.

Multiple identifiability - Continuous work for a long period of time might require from a robot
to react on simultaneous faults. Multiple identifiability characterises how many simulta-
neous faults a system can recognise and respond to.

The Correctness and Classification probability estimate describes the probability of a cor-
rect response to a certain fault. An unstructured and noisy environment can affect the
identification and isolation processes in such a way that the system is able to detect ir-
regularity in its behaviour, but is unable to classify it properly, resulting in an incorrect
response.

3.3 Decision and action selection

The decision and action selection layer reflects the process of choosing an appropriate re-
sponse to a classified abnormal situation. Analysing this part of the system behaviour from
the point of view of human involvement provides a generalised approach. The results of this
analysis are independent of the robotic context.1 The level of autonomy does not pose con-
straints on the structure of information processing of the robot, since it is evaluated based on
the output.

It was noted in the introduction that the level of elimination of human influence from the robot
exception handling process can vary across a continuum of levels. Table 3.1 shows a 10-point
scale of levels in decision automation proposed by Sheridan [24]. The lowest level robot re-
quires complete human support in selection of the appropriate action before it starts execu-
tion. This level is similar to human-robot cooperation in tele-robots when resolving excep-
tional situations is exclusively dependent on operator skills. At this level an operator has to
make a choice without robot assistance. At level 2 the system performs an analysis and pro-
vides the operator with FDI information, but there is no automated mapping between the ac-
tions available to the robot and the detected exceptions. At the 3rd level the system provides
limited assistance in making a choice. The operator receives a prioritised list of available ac-
tions. At the 4th level of automation that is similar to an expert system behaviour, it selects one
option based on all existing constrains and goals. The 5th level of automation is the lowest at
which the system is completely dependent on the operator. An example of a system at level 4-5
of automation is a Spacecraft Emergency Response System (SERS) [4].This system supervises
the spacecraft, but depends on the operator decisions. At levels 6 to 9 the operator can interfere

1The robotic context is a combination of the robot, its task and its operating environment.

BRICS Deliverable D6.1 7

3.4. ACTION IMPLEMENTATION

Table 3.2: Levels of ability of robot to implement action

A robot:
High 6. actively changes itself and/or the environment to

solve the problem before completing the task
5. reconfigures itself to ignore the problem and to

complete task as good as possible
4. requests assistance and suspends execution until

the detected problem has disappeared
3. continues execution neglecting the problem
2. suspends execution until the detected problem

has disappeared
Low 1. interrupts execution by shutdown

with the robot decision, but is not required in the process. The highest level represents com-
plete independence in the process of choosing the action. A human is ignored in the decision
process at this level of automation.

3.4 Action implementation

In order to evaluate a robot’s ability to implement actions, we propose to use the concept of
Quality of service (QoS). In service robotics the robot is designed to deliver multiple services.
Unstructured and linguistic task descriptions leave room for deviations in the results. There-
fore, it is possible to describe a robot state as a continuous approximation of an ideal result. An
abnormal event changes the robotic context by introducing a new constraint, a new goal or an
alteration in the robot-environment system state. In other words, an abnormal event brings the
system into a state where one or several constrains are violated. An appearance of new restric-
tions might create an over-constrained system, such that the ideal solution can not be reached
anymore. The concept of quality of service reflects the distance between the optimal solution,
i.e. the solution a system can reach during normal workflow, and the solution the system can
reach in the presence of faults.

To give an example of quality of service measurement, we will apply this concept to the Middle-
Size RoboCup omni-directional robot developed by Graz University of Technology [12]. This
robot can retain functionality in the presence of faults, revealing a high level of robust auton-
omy. The actuation system of the robot consists of 3 omni-wheels. The goal of the actuation
system is to move the robot along a desired trajectory with a given orientation. It is a fully ac-
tuated process. Failure of a motor introduces a new constraint for the system and it becomes
impossible to fulfill the main goal. However, the abnormal event management implemented
in the robot can reconfigure the controls and planners to generate a new trajectory and use
the remaining omni-wheels to move along the desired path, but without keeping the desired
orientation. In this case the loss of one degree of freedom is not fatal to all tasks at hand. Since
the robot retains 2 out of 3 degrees of freedom, we can say that it can provide around 60% of
its quality of service, although the real application will dictate the importance of each degree of
freedom which should be expressed in form of weight factors.

The ability of the robotic system to implement actions can be evaluated based on its influence
on the context. At the first level a robot is limiting its influence by interrupting the workflow
through shutdown of the involved components. At the second level a robot can suspend exe-
cution waiting until conditions will satisfy the workflow requirements. A next level robot persis-
tently tries to continue execution neglecting the problem. At the fourth level a robot is looking
for assistance to solve the problem. At level five a robot reconfigures itself in order to ignore the

8 BRICS Deliverable D6.1

3.5. CONCLUSIONS

problem and to complete the task as good as possible. At the highest-level, a robot is actively
changing itself or the environment to solve the problem before completing the task.

3.5 Conclusions

The ability of a robot to deal with unexpected situations is an essential requirement for robot-
human co-existence. This ability of robust autonomy stands apart from demanding functional
requirements, but it is a barrier that separates a service robot at home from a prototype in the
lab. In order to support designer decisions the evaluation of robust autonomy should be based
on precisely defined concepts and measures. In this part we have combined several different
approaches from other application areas to create a measurement framework for robust au-
tonomy evaluation.

We have defined robust autonomy as the ability of a robot to deal with abnormal situations
with minimal human involvement. The models of abnormal event management were used
to analyse this ability. A three-stage assessment approach reflects separation of concerns in
the system. Fault detection represents the context-based information acquisition and analysis.
The decision and action selection reflects the amount of responsibility the robot is allowed to
take. Action implementation indicates the robot’s ability to fulfil its goals.

This three-stage assessment approach makes it possible to use this framework for the layered
design of an abnormal event management process while interdependence between different
layers aids to create a well-balanced system.

BRICS Deliverable D6.1 9

4 Fault forecasting

It has been proven effective to start development of fault tolerant system with systematic analy-
sis of possible faults. A number of techniques were developed to itemise, assess probability and
indicate relation between system faults. In the following taxonomy of Avienzis, such techniques
are called fault forecasting. The application of fault forecasting techniques is widely spread in
the development of safety critical systems. It is most often applied for the development of hard-
ware elements. However it is interesting to note that in software developments fault forecasting
techniques have proven to be more efficient than diversity in design(N-version programming)
or the collaborative development [21]. The fault forecasting methods rely on:

• Scenario based analysis - Failure mode effect and criticality analysis (FMECA) [23], Soft-
ware Architecture Reliability Analysis approacH (SARAH) [26]

• Cause and effect analysis - Fault Tree Analysis (FTA), Event Tree Analysis (ETA)
• Risk assessments - Stress Strength Analysis[3], Reliability prediction [1]

The scenario based approach to fault forecasting is a bottom up analysis of the system reaction
to element failures. Techniques such as Failure Mode Effects and Criticality Analysis start with
some assumptions related to the failure of some component. The behaviour of the system is
examined after fault activation; this is the scenario. The resulting effects on the system and
the environment are then assessed to decide if the system requires any alteration. The analysis
process is harnessed by the strict documentation guidelines, exemplified in [23]. For FMECA
all results are collected in a table like the one on figure 4.1

Figure 4.1: Example of FMEA worksheet [23]

The Cause and effect approach is a fault forecasting technique that consists of a top down sys-
tematic enumeration of the plausible system events(fault/failures). An event is a failure of a
system element, it is a basic element of a fault tree analysis. In Fault Tree Analysis, the most
evident failure of the system such as failure to fulfil the main task is considered top event. Any
event or combination of events that cause the top event to happen are lower in the event hier-
archy. The hierarchy of the events is captured by a logic three. Logic gates such as AND, OR,

10 BRICS Deliverable D6.1

XOR represent the correlation between lower and higher events. The analysis is concluded with
a basic event. A basic event is the failure of the atomic element of the system, it can not be af-
fected by the designer. If changes in the system are considered necessary the analysis should
be repeated for the part of the system that has been redesigned. An example of a fault tree is
presented in figure 4.2.

Figure 4.2: Example of FTA for failure in the path traversing

Risk assessments is a fault forecasting technique based on failure probability estimates. The
probability estimate is based on experimental data. There are two main approaches possible:
either the system is tested as whole or system parts are tested separately. If the system compo-
sition is known and the reliability estimate of all parts are known then it is possible to compute
the probability of failure for the whole system. It is also possible to control the system depend-
ability by changing the structure of the system or by increasing reliability of its components.
Examples of detailed processes for risk assessment procedures are presented in the Military
Handbook: RELIABILITY PREDICTION OF ELECTRONIC EQUIPMENT [1].

The techniques presented above are based on the a priory/experimental knowledge available
in the domain and highly depended on experience of engineers. To improve the process of
failure analysis, the domain knowledge should be captured in the same manner. One of the
best ways to represent knowledge is through hierarchical structures such as taxonomies.

The taxonomy presented in here is orthogonal to the taxonomy of faults presented by Avienzis
[2]. In order to see a full ontology view, this taxonomies should be combined. The fault analysis
and classification is strictly dependent on the chosen architectures and layer structuring.

BRICS Deliverable D6.1 11

Figure 4.3: Taxonomy of faults

The sources of the failure can be analysed from three different prospectives: from hardware,
software organisation, control organisation. From a hardware point of view there are 5 func-
tional types of elements in a robot[7]:

Effectors are elements representing parts with which robots can affect the environment. All
types of limbs, wheels or actuation mechanisms compose this category. Effectors include
mechanical structures, actuation motors and wiring up to a controller.

Sensors are elements responsible for perception. The wiring of the sensor to controller is also
included in this category, hence there is no difference from control system point view
between failure in the sensor itself or wiring to it.

Control systems are elements responsible for computation of any kind. This type of elements
cover micro controllers, computers and hardware that support the communication be-
tween parts of the control system on the robot.

Power class denote any source of energy that is available for the robot as well as all power
related wiring.

Communication is parts of the system responsible for communication to environment.

Another view on source of failure is from software organisation. The software organisation for
Robotics or Generic BRICS Robot Application Software Architecture was proposed by Gerhard
K. Kraetzschmar [10]. This architecture is based on 6 layers of abstraction. The failures accord-
ingly can originate form each level of abstraction.

Layers of control is another way to see a robotic system (fig. 4.4). Each of the layers can contain
or be a source of the failure.

12 BRICS Deliverable D6.1

Figure 4.4: Layers of control

Loop Control - This level is concerned with dynamics of the system. Failures on this level
result in the extensive flows and efforts, which could lead to destruction of the hardware
or environment. High detection of speed or forces is essential for fault tolerance on this
level; recovery procedures can be reduced to suspending the execution.

Sequence Control - This level is related to the kinematic status of the system. Failures on this
level result in incorrect movements. This is similar to human slip type of failure [7]. The
fault tolerance on this level is mostly a trade-off between speed and robustness of fault
detection; the complexity of possible recovery procedures is limited by speed of the re-
sponse.

Supervisory Control - This level n is related with a current context. Failures on this level result
in incorrect actions. Failures on this level are similar to human mistakes [7]. The fault
tolerance on this level is concentrated on robustness of fault detection, correct probabil-
ity estimate and high isolation properties; the main recovery procedures operate on this
level.

User Interface - This level is related to robot human interaction. Failures on this level result
in incorrect directions to the robot. It is similar to a communication failure. The fault
tolerance on this level is implemented trough command confirmation and assistance
requests .

The fault forecasting techniques are aimed to justify the trust in the system ability to deliver
a service. If the risk of failure is considered to be unacceptable the design procedure should
be repeated until the system satisfies the requirements. Redesign of the system can be tack-
led by either fault removal or fault tolerance. Fault removal is the most direct contribution to
dependability of the system, but in a robotic system it is not always possible due to an open
environment. Fault tolerance contributes to dependability indirectly and some components
are allowed to fail but the system overall will deliver a correct service. The concept of robust
autonomy is an extension of fault tolerance; it allows some functionality to fail but the system
will retain other functionalities and will deliver an acceptable service.

The result of preforming the fault forecasting analysis is a knowledge base that contains inter-
relation between the components, functionaries, events and failures. This knowledge base can
be utilised in two different ways. As major guidelines for system redesign to support the robust
autonomy concept and as part of automated fault tolerance algorithms.

BRICS Deliverable D6.1 13

5 Design guidelines

5.1 Design for robust autonomy

One of the main trends in robotics is to ensure component reuse and functionality encapsula-
tion. From the field of secure and dependable computing this trend is supported by means of
increasing dependability. The main emphasis created by such an approach is the development
of dependable components. Although dependable components is at the basis of a dependable
system, there are limitations.

Current levels of complexity for robotic components render impossible to maintain a consis-
tent level of dependability through all system parts. Components with la ow dependability
level and without special precautions will jeopardise the dependability of the whole system.
It is often a requirement in robotics to construct a reliable system from less reliable compo-
nents, which is a typical challenge of safety critical systems. Limited human interventions in
a robot workflow make the ability of detecting and recovering from failure of a component on
the system level an essential feature for a robot to ensure its robust autonomy.

Dependable components encapsulate certain type of functionalities making them reusable,
however the fault tolerance is enclosed and fused with the component functionality. It is known
that “in operation software systems often more then two thirds of the code is devoted to de-
tecting and handling exceptions” [8]. Separation of the normal execution flow from the excep-
tion handling allows to create more reliable system, more understandable and more reusable
systems.[15]

Dependable components are developed with the assumption that all the faults should be toler-
ated by means of the same component. However there is only a limited set of faults that could
be tolerated under this assumption. Convoluted states of a robotic system created on different
levels of abstraction create a set of complex abnormal situations. A recovery process required
to let the system return into an error free state needs to be more involved and requires coop-
erative efforts of several components. Much like combination of components used to create a
new system behaviour, a combination of the components should be used to create a complex
recovery process.

These requirements (to tolerate failure of the component at system level, to separate the ex-
ception handling and to create more complex recovery process) present the idea of cooperative
recovery. From a component point of view cooperative recovery is a process in which a system
(component) is transferred to an error free state by a sequence of environmental states (actions
of cooperative components). For example, software rejuvenation is a solution that allows to re-
move or prevent failure of the component through restart which initiated by other element of
the system.

One of the concepts of component based development is hierarchical organisation of the sys-
tem. This concept implies that combination of the components used to create new component
with more complex behaviour. The hierarchical architecture of the components reinforces the
concept of cooperative recovery. On each level of hierarchy, components capable of coopera-
tive recovery will create a level of protection for the system.

The development of the system that would support cooperative recovery consists of the analy-
sis of existing solutions and limitations, synthesis or adaptation of the solutions and evaluation.
Here we will start with the analysis of existing solutions to fault tolerance problems. There are
several facets of the fault tolerance process that need to be reviewed:

• architectural problem - how the components should be organised to support cooperative
recovery.

14 BRICS Deliverable D6.1

5.2. ARCHITECTURAL PROBLEM

• detection problem - how the failure could be detected/recognised outside of the compo-
nent.

• recovery problem - how recovery process should be organised.

5.2 Architectural problem

The cooperative component recovery should be supported by a proper system architecture. A
system architecture is what enables to generate a desired behaviour from a behaviour of the
components. Cooperative recovery can be seen as an other type of desired behaviour. Addi-
tion of new parallel type of behaviours in the system will increase complexity of the system,
eventually reducing system maintainability level and jeopardising dependability. Moreover a
requirement to interrupt the normal workflow in case of the fault activation or to enter a spe-
cial state demands a mechanism of switching the execution paths, which also contributes to
system complexity. There are three topics that address the complexity issue: organisation of a
single component, system partitioning and flow of execution control.

Figure 5.1: idealized Fault tolerant component software [17]

There are several requirements to the organisation of a single component. To ensure reusability
and avoid introduction of the unnecessary complexity in the system component, it must have
a clearly defined boundary. The behaviours of the components should be encapsulated as well
as a fault handling mechanisms. This is achieved through defined interfaces for normal and
abnormal workflow. For an abnormal work flow a component should receive the information
about the failures in cooperative components and distribute information about faults it cannot
handle. Internally the component should also support a separation of the exception handling
from normal flow. An example of the component architecture that meets these requirements
is presented on the figure 5.1. It was initially proposed by Brian Randell [25] and elaborated for
software systems by Anderson, Lemo, Brito. The similar design was used in a hardware design
by Marcel A. Groothuis [11] to create cooperative control systems working in parallel figure5.2 .

The iFTE has four types of external interfaces:

• ProvidedServices which is responsible for the provision of (fault-tolerant) services;
• SignalledExceptions which responsible for signalling either interface or failure excep-

tions;
• RequiredServices which specifies the required services;
• ReceivedExceptions which specifies the external exceptions that need to be handled.

The decomposition of the system in recoverable units is a trade-off between error confinement
and development overhead. It is clear from figure 5.1 that each component responsible for the
normal behaviour is supported by 3 other components. Although it is possible to create iFTE
from every system component, it might not be beneficial. This is because development and

BRICS Deliverable D6.1 15

5.3. DETECTION PROBLEM

Figure 5.2: idealized Fault tolerant component hardware [11]

computation overhead created by additional components require additional resources pos-
sibly making the component unusable. On the other hand decomposition of the system on
smaller elements allows better fault isolation, thus increasing fault tolerance. Implications of
this trade-off in software are discussed by Hazan Sözer in his PhD thesis [26]. The proposed so-
lution is partitioning the system on recoverable units(RU) based on minimisation of function
calls between the recoverable units. The main limitation of the proposed solution is scalability,
since the system should be analysed at run time and the decomposition is based on the so-
lution of a set partitioning problem. Another part of the solution is to create another view of
the system that will explicitly represent recoverable units and communications between them.
This type of the view on system in the tool-chain(BRIDE) would allow to model exceptional be-
haviours, planning the recovery modes and the system decomposition. The process of system
decomposition on recovery units should be investigated more to create guidelines that would
address problems of scalability and a complex recovery process.

Control of the execution flow based on the element failures is similar to exception handling
mechanisms developed in the software engineering. There are 5 groups of handling models[6]:
termination, resumption, hybrid, retrying and nonlocal transfer. The control of the execution
flow is rarely supported on the component level abstraction. Therefore further investigation is
required to identify the best practice in that area. The set of guidelines for exception handling
mechanisms in concurrent cooperative system are presented by Dusko Jovanovic [15].

In summary although it is possible to derive some initial guidelines for the system architec-
ture that will support fault handling from the literature, more research is required in the area
software decomposition and exception handling.

5.3 Detection problem

The detection of a component failure addresses the signalling of system failures. From the de-
tectability point of view there are two types of failures signalled and un-signaled. The signalled
failures are detected inside of the component and indicated for users. If such indication does
not occur, the failure is called un-signaled. The development of a detection mechanism is di-
rected at creating a components that will reduce the set of un-signaled failures in the system.

16 BRICS Deliverable D6.1

5.3. DETECTION PROBLEM

The main characteristics of such components were presented in Chapter 3. In here we will
review the existing directions of the research in the area of detection systems.

Figure 5.3: Taxonomy of detection system by Venkatasubramanian

The development of detection systems in software and hardware have been going on in parallel.
However there are many similarities due to the results in both fields. The detection systems for
hardware are based on process data and the laws of physics, much like the detection systems for
software are based on execution data and the contracts and definitions of service. In both cases
some priory knowledge is supplied to a detection system. Figure 5.3 presents the taxonomy
of Venkatasubramanian[29] developed for a detection system used in chemical engineering.
Similar work has been done by Isermann[14] and Carlson[7]. Based on the knowledge used in
the system there are three main types of FDI systems, namely:

Model based system is created with assumption of a priory knowledge about the component.
The components are presented as white boxes for which their internal execution can be
described and monitored.

Process history based system is created with the assumption that the only accessible infor-
mation is the process history.

Hybrid systems combine both types of information and are called hybrid systems.

Further distinction could be drawn between quantitative and qualitative methods. Quantita-
tive systems are monitoring and comparing exact values creating precise views on how much
the system deviates from the expected behaviour. The qualitative system classifies the be-
haviours.

Several comparative studies have been done in order to identify optimal detection algorithms
for the task at hand. However a well developed theory is rarely elaborated into reusable prac-
tical solutions. The automatic detection components are developed from scratch for a specific
system. The reuse of the detection algorithm is complicated due to specific knowledge in-
cluded into the solution. To the best of our knowledge there is no open source/free frameworks
that supports inclusion of detection blocks. Presence of configurable components for detection
software and hardware malfunction could become a distinct feature of “BROCRE”.

Taxonomy of fault sources4.3 is a first step to identify similarities between faults in the robotics.
Similar types of faults require similar types of detection systems. For example monitoring of the
effector faults can be done using s bond-graph approach [18, 19]. This technique is particularly

BRICS Deliverable D6.1 17

5.4. RECOVERY PROBLEM

promising because elements of the bond-graph structure are reusable and transformations of
the bond-graph model into detection algorithms is a rigid procedure [22]. Although the clus-
tering by sources of failure provides an initial clustering for the detection methods, the same
source can generate different types of failures. There are several types of failures that have to be
addressed by detection blocks. Figure 5.4 presents a taxonomy of failure types for the robotics
domain:

Figure 5.4: Types of failure

wrong value - the failure of the component results in wrong output value. The examples could
be the sensor that give incorrect output, joint that does not respond to control system
commands or incorrect computation results

wrong timing - the failure of the component results in delayed or a too early output. The ex-
amples could be deadlock, live lock or change in the system dynamics

out of resource - the failure of the component results in the request of resources that does not
exist or is unusual for this component. The examples could be the attempt to overload
CPU, memory failures or power drain.

wrong execution path - the failure of the component results in initiating an incorrect work-
flow. The examples could be a incorrect service request.

The detection system should be structured in the same way as it was presented in the section
5.2. Each detection element is responsible for one recoverable unit(RU). Increasing complexity
of the RU will increase the complexity of the detection algorithm and reduce quality of isola-
tion. Therefore it is important to take in the consideration detection process during system
decomposition. The monitoring approach is selected based on the taxonomies presented on
figures5.4, 4.3 and results of fault forecasting for this component. This will support reusability
of the detection algorithms together with RU.

5.4 Recovery problem

From the point of view of dependable computing, a recovery process is a transformation of
the system state that contains errors or faults into a state without detected errors and without
faults that can be activated again. From this definition it follows that there are two trends in the
recovery process: error handling and fault handling. Fault handling is a process that prevents
faults from further activation. Error handling is a process of eliminating errors from the system
state.

18 BRICS Deliverable D6.1

5.4. RECOVERY PROBLEM

The ability of the robot to respond to exceptional situations to a large extent consists of recov-
ery processes. Recovery algorithms are aimed to transfer the system into a correct state after
the fault has been activated in 3 different ways: compensation, forward recovery, backward
recovery.

Figure 5.5: taxonomy of the recovery types

Compensation is a online replacement of the failed component with a redundant one. Such
a system does not lose any functionality in case of a component failure. There are 2 types
of redundancy possible, replication of the element or replication of its function those named
accordingly: structural redundancy, functional redundancy.

Structural redundancy indicates a complete replication of system parts. It is used to protect
the system from failures in the replicated component, with assumption that the behaviour
of the component has been designed correctly, but there is a probability of failure of sub-
components. Replication is often used to increase reliability of safety critical electromechanical
systems.

Functional redundancy represents the replication of the function, but not with the same de-
sign. This approach provides a system with design diversity. It protects form design mistakes as
well as offers component replication. The functional redundancy can be categorised depend-
ing on the implementation. We will call the complete replication of the function of a specially
designed component N-version design (after N-version programming in software engineer-
ing). If combination of several elements of the system can be used to replace a function of
the failed components it is named a complimentary part. Unitising a prior knowledge about
system behaviour to compensate the failure is called informational redundancy.

Forward recovery is a process of masking the failure of the component. The system interrupts
the normal workflow and attempts to provide the service by an alternative execution process.
Depending on the system ability to achieve the goal there are two types of forward recovery:
exception handling and graceful degradation. The exception handling is a recovery process
that allows a system to deliver a correct service by means of the alternative execution process.
It is most typically applied to mask transient faults.The graceful degradation is a recovery pro-
cess that allows system to deliver an acceptable service by means of the alternative execution
process. This type of recovery process is applied to mask permanent faults.

Backward recovery is a process of transferring system to a known error free state. The system
constantly records its states, these records are used to back step to an error free state. There
are two distinct types of backward recovery: recovery blocks, check-pointing. Recovery blocks
contain three elements the functionality, the checking mechanism and rollback procedure. If
the functionality of the recovery block fails the checking mechanism detects the failure and
initiate rollback procedure. In check-pointing system states are recorded to be replayed in case

BRICS Deliverable D6.1 19

5.4. RECOVERY PROBLEM

of system failure. The failure of the component is then due to the inability to transfer it to an
initial position after that the component can enter a last known error free state(check-point)
before continuing execution.

20 BRICS Deliverable D6.1

6 Use cases

6.1 Robot drive failure – Omni wheels

TBW

6.2 Robot arm failure – Reducing working envelop

TBW

6.3 Path planner failure – N-version programming

TBW

BRICS Deliverable D6.1 21

7 Conclusion

TBW

22 BRICS Deliverable D6.1

Bibliography
[1] MILITARY HANDBOOK RELIABILITY PREDICTION OF ELECTRONIC EQUIPMENT. USA

Department of defense, 1991.

[2] Algirdas Aviezienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr. Basic concepts
and taxonomy of dependable and secure computing. In IEEE TRANSACTIONS ON DE-
PENDABLE AND SECURE COMPUTING, volume 1. IEEE Computer Society, January 2004.

[3] B. S Blanchard and W. J Fabrycky. Systems engineering and analysis. 2006.

[4] J. Breed, K. Walyus, and J. Fox. Enabling advanced automation in spacecraft operations
with the spacecraft emergency response system. In AAAI Technical Report SS-01-06. The
AAAI Press, Menlo Park, California, 2001.

[5] BRICS. Description of work. Technical report, SEVENTH FRAMEWORK PROGRAMME,
2008.

[6] P. A Buhr and W. Y.R Mok. Advanced exception handling mechanisms. IEEE Transactions
on Software Engineering, 26(9):820Ð836, 2000.

[7] J. Carlson, R. R Murphy, and A. Nelson. Follow-up analysis of mobile robot failures. In
IEEE International Conference on Robotics and Automation, volume 5, page 4987Ð4994,
2004.

[8] F. Cristian. Exception handling and tolerance of software faults. Software Fault Tolerance,
3:81–107, 1995.

[9] Stan Franklin. An agent architecture potentially capable of robust autonomy. In AAAI
Technical Report SS-01-06. The AAAI Press, Menlo Park, California, 2001.

[10] Jan Paulus Nico Hochgeschwender Michael Reckhaus Gerhard K. Kraetzschmar, Aza-
mat Shakhimardanov. Deliverable d-2.2: Specifications of architectures, modules, modu-
larity, and interfaces for the brocre software platform and robot control architecture work-
bench. Technical report, Bonn-Rhine-Sieg University, 2010.

[11] M. A Groothuis, J. van Zuijlen, and J. Broenink. FPGA based control of a production cell
system. Communicating Process Architectures 2008, 66:135Ð148, 2008.

[12] Michael Hofbaur, Johannes Köb, Gerald Steinbauer, and Franz Wotawa. Improving ro-
bustness of mobile robots using model-based reasoning. Journal of Intelligent and Robotic
Systems, 48(1):37–54, January 2007.

[13] A. R Hudson and L. H Reeker. Standardizing measurements of autonomy in the artificially
intelligent. In Proceedings of the 2007 Workshop on Performance Metrics for Intelligent
Systems, pages 70–75, 2007.

[14] R. Isermann. Fault Diagnosis Systems – From fault detection to fault tolerance. Springer
Verlag, 2006.

[15] D. S Jovanovic. Designing dependable process-oriented software, a CSP approach. PhD
thesis, University of Twente, Enschede, The Netherlands, 2006.

[16] David Kortenkamp. The roles of machine learning in robust autonomous systems. In AAAI
Technical Report SS-01-06. The AAAI Press, Menlo Park, California, 2001.

[17] R. De Lemos, P. A de Castro Guerra, and C. M.F Rubira. A fault-tolerant architectural ap-
proach for dependable systems. IEEE software, page 80Ð87, 2006.

[18] Chang Boon Low, Danwei Wang, S. Arogeti, and Ming Luo. Quantitative hybrid bond
Graph-Based fault detection and isolation. Automation Science and Engineering, IEEE
Transactions on, 7(3):558–569, 2010.

BRICS Deliverable D6.1 23

BIBLIOGRAPHY

[19] Chang Boon Low, Danwei Wang, S. Arogeti, and Jing Bing Zhang. Causality assignment
and model approximation for hybrid bond graph: Fault diagnosis perspectives. Automa-
tion Science and Engineering, IEEE Transactions on, 7(3):570–580, 2010.

[20] B. Lussier, A. Lampe, R. Chatila, J. Guiochet, F. Ingrand, M.O. Killijian, and D. Powell.
Fault tolerance in autonomous systems: How and how much? In Proceedings of the 4th
IARP/IEEE-RAS/EURON Joint Workshop on Technical Challenge for Dependable Robots in
Human Environments, Nagoya, Japan, 2005.

[21] R.A. Maxion and R.T. Olszewski. Eliminating exception handling errors with dependabil-
ity cases: a comparative, empirical study. Software Engineering, IEEE Transactions on,
26(9):888–906, 2000.

[22] A. Mukherjee. Bond graph in modeling, simulation and fault identification. CRC Press,
2006.

[23] USA Department of defense. MILITARY STANDARD PROCEDURES FOR PERFORMING
A FAILURE MODE, EFFECTS AND CRlTlCALliV ANALYSIS. USA Department of defense,
1980.

[24] R. Parasuraman, T. B Sheridan, and C. D Wickens. A model for types and levels of human
interaction with automation. IEEE Transactions on Systems, Man and Cybernetics, Part A,
30(3):286–297, 2000.

[25] B. Randell. System structure for software fault tolerance. In Proceedings of the interna-
tional conference on Reliable software, pages 437–449, Los Angeles, California, 1975. ACM.

[26] H. Sözer. Architecting fault-tolerant software systems. PhD thesis, University of Twente,
Enschede, The Netherlands, 2009.

[27] R. F Stengel. Intelligent Failure-Tolerant control. IEEE Control Systems Magazine, 1991.

[28] Donald E. Swihart. Automatic ground collision avoidance system (auto gcas). In
ICS’09: Proceedings of the 13th WSEAS international conference on Systems, pages 429–
433, Stevens Point, Wisconsin, USA, 2009. World Scientific and Engineering Academy and
Society (WSEAS).

[29] Venkat Venkatasubramanian, Raghunathan Rengaswamy, Kewen Yin, and Surya N.
Kavuri. A review of process fault detection and diagnosis. part i: Quantitative model-based
methods. Computers & Chemical Engineering, 27(3):293–311, March 2003.

[30] Vandi Verma, Reid Simmons, Dan Clancy, and Richard Dearden. An algorithm for Non-
Parametric fault identification. In AAAI Technical Report SS-01-06. The AAAI Press, Menlo
Park, California, 2001.

24 BRICS Deliverable D6.1

	Contents
	Executive summary
	1 Introduction
	2 Background information
	2.1 Basic concepts
	2.2 Definition of robust autonomy

	3 Evaluation criteria
	3.1 Model of autonomous fault tolerance
	3.2 Information acquisition and analysis
	3.3 Decision and action selection
	3.4 Action implementation
	3.5 Conclusions

	4 Fault forecasting
	5 Design guidelines
	5.1 Design for robust autonomy
	5.2 Architectural problem
	5.3 Detection problem
	5.4 Recovery problem

	6 Use cases
	6.1 Robot drive failure – Omni wheels
	6.2 Robot arm failure – Reducing working envelop
	6.3 Path planner failure – N-version programming

	7 Conclusion
	Bibliography

