
Best Practice in Robotics(BRICS)
Grant Agreement Number: 231940

01.03.2009 - 28.02.2013

Deliverable D4.2: Statecharts and IPC
policy improvements to MDE standards

Markus Klotzbuecher, Herman Bruyninckx

Deliverable: D4.2

Consortium Document Info
KUKA Roboter GmbH Deliverable D4.2
GPS GmbH Dissemination Restricted/Public
BRSU Status Final
KUL Lead Contractor for Deliverable Katholieke Universiteit Leuven
Fraunhofer IPA Due Date of Deliverable March 1, 2010
UTwente Actual Submission Date June 8, 2011
UBergamo Version 0.2
BLUEBOTICS Pages 10



Ver Date Author Description

0.1 February 28, 2010 Markus Klotzbücher, Herman Bruyninckx Initial version

0.2 June 8, 2010 Markus Klotzbücher, Herman Bruyninckx Addressed in-
ternal review-
ers comments

ii



Contents

1 Executive Summary 1

2 Overview: the five C’s 2

3 Statechart improvements to MDE standards 3

4 IPC policy improvements 9

Bibliography 10

iii





1 Executive Summary

Finite state machine based formalisms such as the OMG UML2 State Machines or Harel State-
charts are widley used for modeling the behavior of complex systems. However applying these
formalisms for modeling behavior in component based, robotic systems reveals several short-
comings. The subject of this work has been to analyse the most commonly used finite state
machine based modeling standards with respect to their applicability to the robotics domain.
Based on these insights we have derived a Statechart model which is targeted to the domain
of Coordination of complex robotic systems and yet minimalistic in terms of provided model
elements.

To complement the semantic analysis a reference implementation has been developed, which
has already been successfully applied at several occasions, including the two arm KUKA
Lightweight Robot Arm setup at the BRICS research camp in Malaga.

The work carried out is only outlined in this deliverable; a full description on the topic of se-
mantic analysis to Statecharts can be found found in the following publication [6] (draft status),
which we intend to submit to the JOSER Journal of Software Engineering. The real-time aspects
of the software implementation are described in detail in this publication [7], which was pre-
sented at the International workshop on Dynamic Languages for Robotic and Sensors.

Improvements to IPC standards are discussed in the context of the BRICS component model.
The major insight gained here is that the aspect of Communication must not be included in the
component model, but instead needs to be factored out into an individual model.

1



2 Overview: the five C’s

The current work is carried under the hypothesis that the following aspects (called the 5C’s)
must be separated in order to construct robust and reusable systems. Figure 2.1

Connection

Computation

Communication

Coordination When is something computed
and communicated?

Where is something computed,
and communicated to/from?

What is communicated?

How is something
communicated?C

o
n

fi
g

u
ra

ti
o
n

W
h

a
t 

a
re

 t
h

e
 p

a
ra

m
e
te

rs
 t

h
a
t

d
e
fi
n

e
 a

ll 
fu

n
ct

io
n

a
lit

ie
s?

Figure 2.1: The five C’s

The aspect Communication defines in which way parts of the system can interact with each
other such as by anonymous message passing or request-reply interaction. Computation de-
fines the elementary functionality of which the system is composed. Configuration defines
defines parameters of all other aspects. For instance this could be which computations form a
system and their parameters. Connection defines how these computations are interconnected.
At last Coordination manages the computations and communication such that the behavior of
the system emerges as intended.

2



3 Statechart improvements to MDE standards

Overview

Finite state machine based models and implementations have been in use for decades [3], [4],
[2], [10] [9]. As a consequence many different variants exist which significantly differ in their
semantics, target domain and provided feature set. In order to determine a statechart model
suitable for the domain of Coordination in robotics, existing coordination models were ana-
lyzed in order to identify a minimal subset for this purpose. Summarized, the following criteria
were taken into account:

• Suitability for coordination of complex, multi-robot systems.
• Composability: it must be possible to create complex models by combining simple ones.
• Compositional robustness: changes or errors in individual parts shall be localized as much

as possible effect the whole system as little as possible.
• Minimality: the model shall be as small and simple as possible.
• Relation to UML: as UML is widely used as a modeling language, the graphical notation

and semantics shall be followed as much as possible in order to facilitate adoption by
users already familiar with this standard.

Based on these criteria the rFSM (reduced finite state machine) formalism was defined, which
is described in the next section.

The reduced Finite State Machine model

This is a brief overview of the rFSM (reduce Finite State Machines) formalism. It is a minimalis-
tic model, yet sufficiently rich to serve as coordination component for most of the robot control
software. The model has a structural part (describing states and their transition interconnec-
tions), and a behavioral part (describing the activities of the robot system when in a particular
state, or performing a particular transition).

Structural Model

The rFSM state machine model is a minimal subset of UML2 and Harel Statecharts. It consists
of the following four, main model elements:

• Simple state
• Composite state
• Transition
• Connector

In addition two virtual model elements are introduced in order to simplify descriptions about
different types of elements:

• States are either of simple state or composite state type.
• Nodes are either States or Connectors.

Figure 3.1 shows the complete model as an Ecore diagram.

A composite state is a state which can contain either other composite states or simple states.
At the top-level any rFSM model is always contained in a top-level composite state. This way a
state machine can immediately be composed by inserting it into a new composite state.

In contrast to composite states simple states can not contain any other states; they are leaves
in the state machine tree. (This tree is not to be confused with the state machine graph, in that
the tree represents a hierarchy of decomposition, and not a map of the transitions that can take
place between states.) Transitions connect Nodes in a directed fashion and carry a list of events

3



3. Statechart improvements to MDE standards

Figure 3.1: rFSM Ecore model

which will trigger the transition. Transitions are owned by a composite state and not (as often
assumed) by the state from which they originate.

Connectors can be used to build complex transitions by interconnecting several elementary
ones. This model element unifies the four very similar UML model elements junction, initial,
entry- and exit pseudostates.

While connectors can join together multiple transitions it is required that any complex transi-
tion must always start and end on a State.

There exists one connector with special semantics: the initial connector. When a transition
which ends on the boundary of a composite state is executed, the execution will continue with
the transition emanating from the initial connector. Static checks assure that each composite
state which is the target of a transition also contains a initial connector.

Both States and transitions can be associated with programs. States may have entry and/or exit
programs which are executed when the state is entered or left respectively. Simple states may
in addition define a do program which is executed while the state is active. Transitions may
define a guard condition and an effect program. The guard condition is evaluated when a
transition is considered to be executed and will inhibit the transition if false. The effect
function is only executed once the transition is taken.

Behavioral model

After having introduced the building blocks which form the rFSM model, we now describe the
run-time behavior.

4



Deliverable D4.2: Statecharts and IPC policy improvements to MDE standards

In classical finite state automatons only one state may be active at a time. In contrast the Stat-
echarts formalism allows multiple states to be active. The constraints under which this is al-
lowed are:

• for any active state its parent state must be active too
• in a composite state only one child state may be active at a time

A state-machine is executed for the first time by executing the transition starting from the initial
connector which will result in the target state of this transition to be entered.

The elementary way to advance the state machine is to invoke its step procedure. The step
procedure will take *all* events which accumulated since the last step and attempt to find an
enabled transition. This process starts top down, starting from the root composite state down
to the active leaf simple state. As soon as a transition is found the searching is finished and the
transition is executed.

This approach of identifying the next transition has the advantage that it assigns explicit pri-
orities (structural priorities) to transitions (higher to less deeply nested transitions)
which are visible in the graphical representation. Given a set of events and the current active
states of the state graph it is immediately visible which transition will be taken. This follows
the approach of the STATEMATE semantics [4]. Furthermore structural priority largely avoids
conflicts among emanating transitions, leaving only the possibility of conflicts for transitions
leaving a single state. These can be eliminated either by additional guard conditions or by
means of explicitly defining their priorities (priority numbers).

Parallel states

The rFSM model does not include a parallel state model element. This has several reasons.
Most importantly, rFSM is designed for modeling Coordination. In contrast to Computation,
coordinative actions generally consist of issuing commands to lower level Computation com-
ponents and do not require intensive computations. Secondly, to define the semantics of par-
allel states requires introducing many fundamental assumptions such as how parallelism is
achieved (threads, processes, etc.), how priorities are assigned between parallel regions or even
fundamental issues such at which level parallelism shall be introduced (e.g. only parallel do
programs or parallel state entry). Thus it is preferable to not introduce these assumptions into
the core semantics if not strictly necessary.

Of more importance than parallel states (and a practical replacement for it) are distributed state
machines which, for instance, allow to express relationships between multiple robots. Each
of the distributed state machines is an example of the above-mentioned centralised, single-
threaded, state machine. Additionally, by providing a mechanism to distribute state machines
in general the special case of parallel states (distribution at thread level) is covered.

Model transformation between rFSM and UML

Given that rFSM is structurally a subset of UML 2, it is straightforward to define a model trans-
formation from UML to rFSM, thereby making it possible to reuse the large set of available
UML modeling tools to define rFSM models. Of course such transformations require that ei-
ther the UML model elements not available in rFSM can be replaced by composition of rFSM
primitives or are not used during modeling. Violations of this constraint can easily be detected
during transformation.

5



3. Statechart improvements to MDE standards

Examples

BRICS research camp dual arm handover

The following application was prepared as a basic starting point for researchers working on the
BRICS research on mobile manipulation. The overall setup is shown in figure 3.2.

Figure 3.2: Dual arm handover setup

The application involves two KUKA light weight robot arms (LWR) which interact with each
other by handing over an object from one arm to the other. Besides the coordination necessary
for the application itself, further coordination is necessary for interacting with the KUKA Fast
research interface (FRI) [8]. The FRI interface provides low-level real-time access to the LWR
and can reside in two basic states: in monitor mode the robot state can be read; only in com-
mand mode the robot can be additionally controlled. The FRI state may switch from command
mode to monitor mode if the communication quality is insufficient and thus stop executing
commands. Consequently for the application to work both robots must be in command mode.

Figure 3.3 shows the rFSM state chart which models the constraints between application and
FRI states. The handover_demo state containts the application specific states of the robot
arms while handing over the object. If a controller enters the FRI monitor state due to bad
communication quality, a transition to the waiting state is taken in which both robots are
paused. This transition prevents that one robot continues the handover while the other is un-
operational. After the both FRI Controllers are back in command mode, the application can
continue.

This example shows the suitability of statecharts for expressing dependencies among different
coordination. The fact that the application may only execute while the FRI Controller is in
command mode is expressed by the two toplevels states independently of the application. This
separation would not be possible if this coordination were programmed.

Ball tracking example

An example of a rFSM model is given by the component assembly shown in figure 3.4. A ball
swinging on a string is to be followed by a robot arm. The 2D ball positions extracted from two
camera images by BallExtractor components are passed to the estimation component. The
estimated value is then sent to the RobotController which actuates the robot arm. Now the

6



Deliverable D4.2: Statecharts and IPC policy improvements to MDE standards

Figure 3.3: Extended coordination taking FRI states into account

situation is possible that the ball swings out of the observed camera range. In this case the de-
sired behavior is that the robot arm stops at the last estimated ball position. However different
estimation models will show different behaviors; for instance a constant velocity model will
predict the ball motion to continue with the last estimated velocity while a constant position
model will continue to predict the last observed position.

Figure 3.4: Example component layout

A naive solution to this problem would be to add a feature to the estimator to stop the robot
controller once the ball has left the camera range. This solution however will severely limit the
reusability of this component and make it impossible to replace it with different estimation
components which do not make this application dependent assumption. A better solution is
to introduce a Coordination component which encapsulates this policy. The state machine for
such a component is shown in figure 3.5.

7



3. Statechart improvements to MDE standards

Figure 3.5: rFSM example

Instead of making assumptions about the component layout the estimation component raises
an event when the ball is not being tracked anymore. The Coordination component then reacts
to this event and transitions to the pause state in which the robot is stopped. When the ball
enters the camera range and the estimator begins tracking the ball again, a second event is
raised to transition back to the following state and restarting the robot controller in the exit
program of the pause state.

rFSM Software Implementation

We have developed a lightweight and real-time implementation of reduced rFSM Statecharts
using the Lua [5] scripting language. The approach for achieving real-time safe execution of
rFSM statechart models is described in detail in this publication [7] which was presented at the
International workshop on Dynamic Languages for Robotic and Sensors in Darmstadt.

8



4 IPC policy improvements

The underlying mechanisms of Inter-Process communication are most of the time intention-
ally invisible to the robot system designer. Instead it is left up to the middleware to determine
which option is best suited for the specific case. For instance when large amounts of data are
shared between local computations on a single host, the middleware will select a zero-copy,
shared memory based IPC mechanism; likewise a POSIX message queue might be chosen in
the case that lowest possible communication latencies are required.

While this transparency is conveniant during early system development, later on it often be-
comes necessary to modify the communication properties in order to optimize at system level.
Achieving this at software framework level is straightforward; for instance OROCOS RTT [1]
framework allows to define communication properties by means of the ConnPolicy type.
A more difficult question is how to represent such information at the modeling level: on the
one hand it is necessary include modeling support for such properties, as they pertain to the
system specification. One the other hand this implies “promoting” low-level communication
attributes, many which will not be available for all target frameworks, to the platform indepen-
dent layer. The solution to this dilemma, which became apparent during the work of the Com-
ponent Model Task Force is to express such communication specific problems using a separate
Communication model. And in this Communication model, the behaviour of the communica-
tion can be treated by a Coordination FSM. This fact has become obvious as soon as we realised
in the BRICS project that it was necessary to promote the Communication to become first-class
components in the total component model.

9



Bibliography
[1] Herman Bruyninckx. Open Robot COntrol Software. http://www.orocos.org/,

2001. Last visited November 2010.

[2] Object Management Group. Uml 2.0 superstructure, ver. 2.1.2, formal/07-11-02, 2007.

[3] David Harel. State charts: A visual formalism for complex systems. Science of Computer
Programming, 8:231–274, 1987.

[4] David Harel and A. Naamad. The STATEMATE semantics of statecharts. ACM Trans. on
Software Engineering Methodolody, 5(4):293–333, 1996.

[5] Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar Celes Filho. Lua—an
extensible extension language. Softw. Pract. Exper., 26(6):635–652, 1996.

[6] Markus Klotzbuecher and Herman Bruyninckx. A minimal variant of UML state machines
for modeling coordination in complex robotic systems (draft status), 2011.

[7] Markus Klotzbuecher, Peter Soetens, and Herman Bruyninckx. OROCOS RTT-Lua: an
Execution Environment for building Real-time Robotic Domain Specific Languages. In
International Workshop on Dynamic languages for RObotic and Sensors, 2010.

[8] Günter Schreiber, Andreas Stemmer, and Rainer Bischoff. The Fast Research Interface for
the KUKA Lightweight Robot. In IEEE Workshop on Innovative Robot Control Architec-
tures for Demanding (Research) Applications – How to Modify and Enhance Commercial
Controllers (ICRA 2010), May 2010.

[9] W3C. State chart xml (scxml): State machine notation for control abstraction. W3C Work-
ing Draft, 2010. http://www.w3.org/TR/scxml/.

[10] The Math Works. Stateflow, 2011. http://www.mathworks.com/products/
stateflow/.

10

http://www.orocos.org/
http://www.w3.org/TR/scxml/
http://www.mathworks.com/products/stateflow/
http://www.mathworks.com/products/stateflow/

	Contents
	1 Executive Summary
	2 Overview: the five C's
	3 Statechart improvements to MDE standards
	4 IPC policy improvements
	Bibliography

