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Abstract

The development of a complex service robot application is a very difficult, time-consuming, and
error-prone exercise. The need to interface to highly heterogeneous hardware, to run the final
distributed software application on a ensemble of often heterogeneous computational devices, and
to integrate a large variety of different computational approaches for solving particular functional
aspects of the application are major contributing factors to the overall complexity of the task.
While robotics researchers have focused on developing new methods and techniques for solving
many difficult functional problems, the software industry outside of robotics has developed a
tremendous arsenal of new software technologies to cope with the ever-increasing requirements
of state-of-the-art and innovative software applications. Quite a few of these techniques have
the potential to solve problems in robotics software development, but uptake in the robotics
community has often been slow or the new technologies were almost neglected altogether.

This report identifies, reviews, and assesses software technologies relevant to robotics. For
the current document, the assessment is scientifically sound, but neither claimed to be complete
nor claimed to be a full-fledged quantitative and empirical evaluation and comparison. This
first version of the report focuses on an assessment of technologies that are generally believed to
be useful for robotics, and the purpose of the assessment is to avoid errors in early design and
technology decisions for BRICS.
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Executive Summary

This study identifies four major technologies that can improve the software development process
in robotics:

• Component-based programming technology has the potential to significantly increase porta-
bility, interoperability, and reuse of software modules in robotics. There is currently no
component model perfectly well suited for robotics, but some candidates are not so far
away. BRICS should make an attempt to progress this work by defining a component
model taking into account the requirements identified during this study.

• Communication middleware is a necessary element in any state-of-the-art robot control
architecture, because robotics control software for non-trivial robots requires distributed
computing. None of the established middlewares is currently predominant, and it is unpre-
dictable, whether any of the currently available systems will become a de facto standard.
BRICS should follow an open approach with respect to middleware and design software
such that middleware systems can be replaced with reasonable effort.

• Interface technologies play a central role in taming the high negative impact of hardware
heterogeneity. For every hardware component available and used in robotic platforms,
their often peculiar custom-defined interface should be cleanly encapsulated by object-
oriented classes. Abstraction hierarchies built upon these classes allow the definition of
more abstract, generic interfaces. Programming against abstract interfaces can signifi-
cantly enhance the generality and reusability of functional modules in robotic control.
Some robotics software frameworks already provide a few such abstractions, but there is
neither a thorough approach to design clean object-oriented interfaces nor a systematic
attempt to build interface abstraction hierarchies. BRICS should do exactly this, and do
it systematically.

• Simulation and emulation technologies should be used to enable simultaneous development
of robotic hardware and software and to improve the quality and safety of the resulting
code. Although many simulators are available, they target many different things. Due
to necessary tradeoffs between model precision and simulation performance, it is unlikely
that a single simulator meeting all requirements in a suitable way can be designed. Thus,
BRICS should consider the use of different simulators/emulators at different stages of
software development. A primary objective to have in mind is that robot control software
should be seamlessly usable on both the actual hardware platform and in the simulator.
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Chapter 1

Introduction

The work described in this report was performed in the context of the EU project BRICS. We
briefly describe this project context, then motivate why an assessment of software technology is
appropriate and what the objectives of this assessment are. Finally, we survey the structure of
this report.

1.1 The BRICS Project Context

BRICS1 addresses the urgent need of the robotics research community for common robotics
research platforms, which support integration, evaluation, comparison and benchmarking of re-
search results and the promotion of best practice in robotics. In a poll in the robotics research
community performed in December 2007 95% of the participants have called for such platforms.
Common research platforms will be beneficial for the robotics community, both academic and
industrial. The academic community can save a significant amount of resources, which typically
would have to be invested in from scratch developments and me-too approaches.

Furthermore, scientific results will become more comparable which might promote a culture of
sound experimentation and comparative evaluation. Jointly specified platforms will foster rapid
technology transfer to industrial prototypes, which supports the development of new robotics
systems and applications. This reduces the time to market and thereby gives the industrial
community a competitive advantage. To achieve these objectives the BRICS project proposes
the development of a design methodology, which focuses on three fundamental research and
development issues. This methodology will be implemented in three interwoven lines of technical
activities:

• Identification of best practice in robotics hardware and software components

• Development of a tool chain that supports rapid and flexible configuration of new robot
platforms and the development of sophisticated robot applications

• Cross-sectional activities addressing robust autonomy, openness and flexibility, and stan-
dardisation and benchmarking

The authors of this report all work at Bonn-Rhein-Sieg University of Applied Sciences (BRSU),
which is the partner in BRICS responsible for Architecture, Middleware, and Interfaces. This
work package is to provide fundamental software components using state-of-the-art software
technologies and the usage of these components needs to be well embedded into the tool chain.

The BRICS project is of fundamental importance to ensure the sustained success and com-
petitiveness of European robotics research and the European robotics industry.

1This section is a modest revision of the BRICS in a nutshell section of the project proposal.
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1.2 Motivation for Assessing Software Technologies

Software development for robotics applications is a very time-consuming and error-prone process.
Previous work described in the literature[4] identifies three major sources responsible for the
complexity of software development in robotics:

Hardware Heterogeneity: A reasonably complex service robot integrates an arsenal of sen-
sors, actuators, communication devices, and computational units (controller boards, em-
bedded computers) that covers a much wider variety than most application domains. While
e.g. aviation and the automotive industry face similar situations, their development pro-
cesses are much more resourceful and use a significant number of specialists to manage the
problems arising from heterogeneity. Robotics, esp. service robotics and robot applications
targeting a consumer market are far from enjoying a similarly comfortable situation.

Distributed Realtime Computing: Non-trivial service robots almost inevitably use several
networked computational devices, all of which run some part of the overall control archi-
tecture, which must work together in a well-coordinated fashion. Applying concepts and
principles of distributed computing is therefore a must. That the networking involves sev-
eral kind of communication devices and associated protocols adds even more complexity.
It is not unusual at all that a service robot forces a developer to handle three to five dif-
ferent communication protocols. Furthermore, some devices may pose rather strict timing
constraints, and the developer must deal with realtime computing issues on top of all other
complexities.

Software Heterogeneity: A full-fledged service robot must integrate a variety of functional-
ities that include basically every sub-area of Artificial Intelligence, including knowledge
representation and reasoning, probabilistic reasoning, fuzzy logic, planning and scheduling,
learning and adaptation, evolutionary and genetic computation, computer vision, speech
processing and production, natural language understanding and dialogue, sensor interpre-
tation and sensor fusion, and intelligent control. Many of these areas have developed their
own set of computational methods for solving their respective problems, often using very
different programming languages, data structures and algorithms, and control approaches.
Integrating the different functionalities into a coherent and well-coordinated robot control
architecture is a substantial challenge.

Since about a decade there is a rising interest in the robotics community to improve the robot
application development process. Aside of improving the development process itself (an accompa-
nying report Best Practice Assessment of Software Engineering Methods, [5] will be forthcoming)
and providing a suitable tool chain to support the process (see work performed in WP 4), the
use of state-of-the-art and innovative software technology is of prime interest to improve the
effectivity and efficiency of the development process and the quality of the resulting product.

The main question then is: Which software technologies can help the robotics community to
overcome the problems arising from the complexity of the robot application development process?

There are three main aspects to cover when answering this question. The first aspect is
identifying software technologies that have the potential to address one or more of the problems
faced by robot application developers. The second aspect is assessing to what extent current
robotics software development frameworks already make use of these technologies. And the
third aspect is to look at standardization activities, which are underway even in some robotics
communities. Neglecting existing or ongoing standardization efforts could prevent project results
from becoming adapted by a wider audience. Identifying and criticizing serious deficiencies in
standard proposals under discussion could help to improve standards and make them more
effective.

c© 2010 by BRICS Team at BRSU 4 Revision 1.0



Chapter 1. Introduction 1.3. Objectives of the Assessment Exercise

Note, that this report does not cover issues related to robot control architectures; these
aspects will be considered and discussed in a future report.

1.3 Objectives of the Assessment Exercise

This report has several objectives:

• Identify well-known as well as new, innovative software technologies that are relevant for
robotics.

• Survey the conceptual and technical approach of such software technologies.

• Discuss their innovation potential and how they can benefit the robot application develop-
ment process.

• Assess whether and to what extent they have already been taken up inside robotics or
outside, e.g. in closely related fields like automotive engineering, aerospace engineering, or
advanced applications of embedded systems, such as sensor networks, and summarize the
experiences made so far.

• Identify problems or deficiencies that may present obstacles for take-up and adoption of
the technology.

• Derive a first action plan for how to proceed with the technology in BRICS.

1.4 Overview on the Report

The remainder of the report is structured as follows: The next four chapters describe four classes
of software technologies that have been identified and are expected to be of major importance
for BRICS:

• component-based software technologies,

• communication middleware,

• interface technologies, and

• simulation and emulation technologies.

The final chapter draws some conclusions and describes the implications for BRICS.

Revision 1.0 5 c© 2010 by BRICS Team at BRSU
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Chapter 2

Component Technologies

In recent years, advancements in hardware, sensors, actuators, computing units, and — to a
lesser extent — in software technologies has led to the proliferation of robotics technology. More
complex and advanced hardware required increasingly sophisticated software infrastructures in
order to operate properly. This software infrastructure should allow developers to tackle the
complexity imposed by hardware and software heterogeneity and distributed computing environ-
ments. That is, the infrastructure software should provide a structured organization of system
elements/primitives in the form of independent software units and support communication among
these independent software units.

Robotics is not the only field which needs such infrastructure. Others include telecommu-
nication, aerospace, and automotive engineering. An analysis of the approaches used in these
domains shows that the two essential ingredients for developing distributed software systems are
i) the definition of a structured software unit model, often referred to as component model, and ii)
the the definition of a communication model for modeling communication between these units.
A software unit model includes strictly defined interface semantics and a method for describing
the internal dynamical structure of a unit, whereas a communication model, though often not as
clearly defined as the software unit, requires the specification of inter-unit interaction styles and
specific transport protocol types.

Before categorizing and analyzing existing component models, we distinguish component-
oriented programming (COP) from object-oriented programming (OOP). Basically, all the ob-
jectives of OOP are also an objective in COP, but COP development was driven by the desire
to fix some loose ends of OOP. The following attributes of COP are emphasized in a comparison
with OOP in [6]:

• COP emphasizes encapsulation more strongly than OOP. COP differentiates more strictly
between interface design and implementation of the specified functionality than OOP. The
user of a component does not see any details of the component implementation except for
its interfaces, and the component could be considered as a piece of pre-packaged code with
well-defined public access methods. This separation can also be followed in OOP, but is
not as directly enforced, e.g. by the programming language.

• COP focuses more on packaging and distributing a particular piece of technology, while
OOP is more concerned about how to implement that technology.

• COP components are designed to follow the rules of the underlying component framework,
whereas OOP objects are designed to obey OO principles.

One can also differentiate three factors exposing advantages of COP over OOP with respect to
the composition of units adopted in each approach:

7



2.1. Component Models in Robotics Software Chapter 2. Component Technologies

• Reusability levels

• Granularity levels

• Coupling levels

These factors are tightly related to each other [6].
The fundamental concept of component-oriented programming is the component and their

interfaces. Approaches can differ quite widely regarding their ability to hierarchically compose
more complex components from existing components.

Equally important as the component concept itself is the supportive infrastructure that comes
with it, i.e. the framework for component instantiation, resource management, inter-component
communication and deployment. These frameworks often are already equipped with the means
for inter-component communication, which can influence interface design decisions to some ex-
tent. Unfortunately, it is often quite difficult or impossible to clearly delineate and decouple the
component interaction model from the communication model. Each framework usually features
its own component model, communication model, and deployment model. Different frameworks
have different models for each of the above constituents. As a consequence, it is often not possible
to interoperate and integrate them. In our analysis we mostly emphasize two of these models,
the component model and the communication model.

The next section provides an almost exhaustive survey on existing component models used
in robotics software. We analyze what the specific component features are and how these frame-
works are implemented wrt. these models. Additionally, we provide a comparative analysis of the
component interface categorization schemes in Section 4.1. Since different interface semantics
define how a component interacts with other components and produces/consumes data, the type
of communication policies and the infrastructure are the other elements looked into.

2.1 Component Models in Robotics Software Frameworks

2.1.1 OROCOS

The main goal of the OROCOS project is to develop a general purpose modular framework for
robot and machine control. The framework provides basically three main libraries [7, 1, 2]:

1. The Real-Time Toolkit (RTT) provides infrastructure and functionality to build component
based real-time application.

2. The Kinematics and Dynamics Library (KDL) provides primitives to calculate kinematic
chains.

3. The Bayesian Filtering Library (BFL) provides a framework to perform inference using
Dynamic Bayesian Networks.

The RTT provides the core primitives defining the OROCOS component model and the necessary
code base for the implementation of components. Figure 2.1 illustrates that the OROCOS
component model supports five different types of interfaces. This interface separation fits well into
data and execution flow, as well as time property-oriented schema (see Section 4.1). In the former
case, commands, methods, and events make up execution flow, whereas data ports represent data
flow of the component. If one looks at temporal properties of the interfaces, synchronous (method
and data) and asynchronous interfaces (command and event) can be distinguished.

• Commands are sent by a component to other components (receivers) to instruct them to
achieve a particular goal. They are asynchronous, i.e. caller does not wait till it returns.

c© 2010 by BRICS Team at BRSU 8 Revision 1.0



Chapter 2. Component Technologies 2.1. Component Models in Robotics Software

• Methods are called by other components on a particular component to perform some cal-
culations. They are synchronous.

• Properties are runtime modifiable parameters of a component which are stored in XML
format.

• Events are handled by a component when a particular change occurs (event/signal is re-
ceived).

• Data Ports are thread-safe data transport mechanism to communicate (un)buffered data
among components. Data port-based exchange is asynchronous/non-blocking.

Figure 2.1: Interface types in the OROCOS component model.

The application programmer point of view: In OROCOS, a component is based on the
class TaskContext 2.3. The component is passive until it is deployed (an instance of the class
is created), when it is allocated in its own thread. The TaskContext class defines the "con-
text" in which the component task is executed. A task is a basic unit of functionality which
is executed as one or more programs (a C function, a script, or a state machine) in a single
thread. All the operations performed within this context are free of locks, priority inversions,
i.e. thread-safe deterministic. This class, from the implementation point of view, serves as a
wrapper class (itself composed of several classes) for other sub-primitives of a component, such
as ports, thread contexts, operation processors, that is, it presents the composition of separate
functionalities/interfaces 2.3 .

One of the main classes in TaskContext is the ExecutionEngine. It executes the decision
logic defined by TaskContext by executing programs and state machines 2.2 . The type of
execution can be defined through ActivityInterface. It allows execution in Sequential, Peri-
odic, Nonperiodic and Slave modes. Additionally, ActivityInterface allocates a thread to the
ExecutionEngine, by default execution proceeds in a Sequential mode [1, 2].

In addition to ExecutionEngine that determines a coordination aspect of an OROCOS com-
ponent, TaskContext implements OperationInterface, which is a placeholder for commands,
methods, events, and attributes of the OROCOS component. Each of these operations is in
turn processed by its own processor, e.g. for events it is EventProcessor and for commands
it is CommandProcessor. From the implementation point of view these processors implement
the same interface as the ExecutionEngine of the component. Therefore, it can be concluded
that OROCOS has at least a two-level coordination through state machines: (a) on the level
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(a) simplified

(b) expanded

Figure 2.2: OROCOS component state machine models, as defined by class TaskContext [1, 2].

of TaskContext, which is also main execution model of the component, and (b) on the level of
operation processors [1, 2].

From the structural and deployment point of view the OROCOS component is a composite
class which has its own thread of execution and could be deployed as a shared object or an
executable. Listing 1 provides the signature of the TaskCore class, which serves as a basis for
the internal OROCOS component model. This is achieved through the statically defined state
machine structure. Listing 2 shows an example of a OROCOS component-based application.

Figure 2.3: OROCOS component implementation model.
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class RTT_API TaskCore
{

public:
enum TaskState
{ Init,

PreOperational,
FatalError
Stopped,
Active
Running,
RunTimeWarning,
RunTimeError

};

virtual bool configure();
virtual bool activate();
virtual bool start();
virtual bool stop();
virtual bool cleanup();
virtual bool resetError();
virtual bool isConfigured() const;
virtual bool isActive() const;
virtual bool isRunning() const;

virtual bool inFatalError() const;
virtual bool inRunTimeWarning() const;
virtual bool inRunTimeError() const;
virtual bool doUpdate();
virtual bool doTrigger();
...

protected:
virtual bool configureHook();
virtual void cleanupHook();
virtual bool activateHook();
virtual bool startHook();
virtual bool startup();
virtual void updateHook();
virtual void errorHook();
virtual void update();
virtual void stopHook();
virtual void shutdown();
virtual bool resetHook();
virtual void warning();
virtual void error();
virtual void fatal();
virtual void recovered();

};

Listing 1. OROCOS task signature

int ORO_main(int arc, char* argv[])
{

MyTask_1 a_task("ATask");
MyTask_2 b_task("BTask");

a_task.connectPeers( &b_task );
a_task.connectPorts( &b_task );

a_task.setActivity( new PeriodicActivity(OS::HighestPriority, 0.01 ) );
b_task.setActivity( new PeriodicActivity(OS::HighestPriority, 0.1 ) );

a_task.start();
b_task.start();

a_task.stop();
b_task.stop();

return 0;
}
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Listing 2. OROCOS task-based application

2.1.2 OpenRTM

OpenRTM[] is open source implementation of the RT-Middleware specification and is devel-
oped by AIST, Japan. This specification defines the following three sub-specifications which are
complementary to each other: (i) functional entities, i.e. components which perform system-
related computations, (ii) communication entities, i.e. middleware which provides communica-
tion means for the components, and (iii) tool entities, i.e. a set of tools supporting system- and
component-level design and runtime utilities. Some more detailed information about each of
these specifications include:

• The RT-Component Framework provides a set of classes which can be used to develop
stand-alone software components. Conceptually, any RT middleware component can be
decomposed into two main parts: (a) The component core logic, which defines the main
functionality of the component. All algorithms are defined within the core logic of the
component. (b) The component skin, or wrapper, provides necessary means to expose the
functionality provided by the core logic through the interfaces to the external world. The
RT component framework provides a set of classes which enable this wrapping [3, 8].

• The RT-Middleware: By definition, an RT-component is a decoupled entity whose final
form can be either a shared library or an executable type. In the Robot Technology
package, an RT-component is defined as the aggregation of several classes without main
function, so there is no explicit thread of execution attached to it (it is a passive functional
unit without any thread of execution). That is where RT-middleware comes into play.
RT-middleware makes a call to a component and attaches an execution context and an
appropriate thread to it. By doing this, RT-middleware also takes the responsibility to
manage that component’s life cycle, i.e. to execute actions defined by a component and
communicate with other peers. Note that there can be many instances of RT-component
running. RT-Middleware takes care of the whole instantiation process. That is, the calls are
made from the middleware to a component. OpenRTM implementation uses a CORBA-
compliant middleware environment, omniORB [3, 9, 10, 11].

• Basic Tools Group: The Robot Technology software system also comes with a set of utilities
which simplify development, deployment, and configuration of the applications developed.
In case of the OpenRTM implementation, these tools are RtcTemplate, a component skele-
ton code generation tool, and RtcLink, a component-based software composition tool.

As it was indicated, an RT-component is defined through its computational part, which is a
core logic, and a component skin, which exposes the functionality of the core logic. From a
more detailed perspective these two constituents can be further decomposed into the following
subcomponents [3, 8, 9, 10, 11].

• The Component Profile contains meta-information about a component. It includes such
attributes as the name of the component, and the profile of the component’s ports.

• The Activity is where main computation takes place. It forms a core logic of a component.
Activity has a state machine and the core logic is executed as component which transits
between states or is in a particular state of processing.

• The Execution Context is defined by a thread attached to a component. It executes defined
activities according to the given state.
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• Component Interfaces: OpenRTM components provide three types of interfaces to com-
municate with other components or applications (see Figure 2.4):

– Data Ports, which either send or receive data in pull or push mode.

– Service Ports, which are equivalent to synchronous method calls or RPCs.

– Configuration Interfaces, in addition to data exchange and command invocation inter-
faces. The OpenRTM component model provides an interface to refer to and modify
parameters of the core logic from outside the component. These parameters may in-
clude name and value, and an identifier name. Reconfiguration of these parameters
can be performed dynamically at runtime.

Therefore, depending on the type of port used, a component can interact either through a
client/server pattern for service ports, or through a publisher/subscriber pattern for data ports.
It can be observed that the OpenRTM interface categorization, as in case of the OROCOS
component, also fits to data and execution flow-based schemes as well as a concern-based scheme
(Figure 4.2).

It is interesting to compare component models of OpenRTM and OROCOS projects (figures
2.3 and 2.4). The OROCOS component model provides a more fine-grained set of interface
types. That is, there are specific interfaces for particular types of operations. This allows a
better control over interactions of a component with other peers.

Figure 2.4: The OpenRTM component implementation model.

The application programmer point of view: As has been previously mentioned, an RT-
Component is a passive functional unit that does not have a thread of execution. It is imple-
mented as a class which is inherited from a special base class defined in the RT-Component
framework. All the required functionality of a component is provided by overriding methods of
this base class. From the perspective of a component’s life cycle dynamics, any component in
the OpenRTM framework goes through a life cycle consisting of a sequence of states ranging
from component creation via execution to destruction (see Figure 2.5) [3, 8, 9]. These states can
generally be categorized as:

• The Created State (Created)

• The Alive State (Alive), (The alive state itself has multiple states inside, which is explained
below) and

• The Final State

Since the component functionality is basically defined by methods of a single class, the component
creation process is almost the same as the instantiation of an object from a class in object-oriented
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software framework, albeit with some additional peculiarities. That is, an RT-Component is
created by a manager (RTC Manager) and the manager manages the life cycle of the RT-
Component. Concretely, the manager calls the onInitialize function after it creates an instance
of RT-Component. It also calls the onFinalize function when RT-Component finalizes. In this
way, RT-Component is programmed by describing necessary details in each processing allocated
in specific timing of the RT-Component’s life cycle (this processing is referred to as an Action).
This is to some extent similar to the process of initialization of LAAS/GenoM modules where
the developer also defines an initialization step in the Genom description language [12, 13, 14,
15, 16, 17].

The first time an RT-Component is created it is in Created state. Afterwards, it transits
to Alive state and a thread of execution is attached to it (one thread per component). This
thread is referred to as an execution context of a component. Within this context all the states
and cycle times are defined. We briefly examine a component’s execution dynamics as depicted
in Figure 2.5. OpenRTM component statemachine can be viewed from two perspectives. From
component container (execution context/thread related) point of view and component’s own
point of view. Execution context defines two states, Stopped and Running. Naturally, all the
necessary computation of the component takes place when its thread is in the Running state 2.5.
The execution context reacts with the appropriate callbacks upon arrival of respective events.
Initially, the component is in Stopped state and upon arrival of a start event it transits to
Running state. When the component is in Running it can be in one of the Inactive, Active
and Error states of the Alive super state 2.5, [3].

(a) simplified (b) expanded

Figure 2.5: The OpenRTM component state machine model[3].

Immediately after an RT-Component is created, it will be in the Inactive state. Once it is
activated, the onActivate callback is invoked, and the component transits to the Active super
state. While in this state, the onExecute action is executed periodically. A component’s main
processing is usually performed within this method. For example, controlling a motor based
on the data from other components. The component will stay in the active state until it is
deactivated or transits to the Error state. In either case, appropriate callbacks are invoked.
When in the Error state, and until being reset externally, the onError method will be invoked
continuously. If the onReset method is successful, the RT-Component goes back to the Inactive
state. A problem here is that if resetting fails, a component may stay in the Error state for an
indefinite period of time. There should be some sort of mechanism to take care of this, for instance
automatically resetting the component after a fixed period of time or timeout. Considering
this model, ideally the main task of a component developer should be overriding each of the
state-associated methods/callbacks of the template component with the desired functionality
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[3, 8, 9, 10, 11].
OpenRTM comes with an automatic component generation tool, RtcTemplate. RtcTemplate

can generate two types of components based on the provided input. By default, when only
a module name is given as an argument, it generates data-driven components with data ports
only. In case it is invoked with an *.idl component description file as argument, it generates code
for service port support. This is basically done via a wrapper around CORBA IDL compiler,
therefore it generates a similar set of files: stubs and skeletons. This is valid for component with
service ports because they should know their peers in advance.

The component generation process is to some extent similar to that of the LAAS/GenoM
system [12, 13, 14, 15, 16, 17]. In LAAS/GenoM, the developer has to describe the component
model, including its execution states, the data shared with other components, the component
execution life cycle, and runtime features such as threads etc. This information is then pro-
vided to the genom command line tool, which generates skeletons for the components in the
required programming language. In GenoM, the implementation language is mostly C, whereas
RtcTemplate supports C++, Python and Java [18, 19, 3].

In addition to the problem of development of functional components, there is also the problem
of composition, also referred to as “system integration”. How to connect components with each
other without extra overhead of writing special code for it? OpenRTM takes care of this issue by
introducing RtcLink, an Eclipse-based graphical composition tool. It provides a basic operating
environment required in order to build a system by combining multiple RT-Components. It
also enables the acquisition of meta-information of RT-Components by reading the profile of a
component and its data and service ports. The other alternative to provide the functionality of
RtcLink would be to implment an editing program for connecting components.

The OpenRTM/AIST distribution model is based on distributed objects. It is based on the
omniORB implementation of the CORBA specification. In RtcLink, OpenRTM allows to define
a subscription type when connecting components (what data the component should receive):
flush, new, periodic, triggered. Additionally, the developer can define both a communication
policy, either pull or push mode, and a communication mechanism, either CORBA or TCP
sockets. An OpenRTM component’s computation model (the core logic) allows to perform any
computation/processing need as long as they can be defined via the provided callback methods
tied to the state. It is also possible to combine OpenRTM with external software packages, such
as Player/Stage. The build process is also simplified because both OpenRTM components and
Player/Stage do come in the form of dynamic libraries. Listing 3 shows the RT-Component
structure as it is implemented in OpenRTM/AIST.

class RTObject_impl
: public virtual POA_RTC::DataFlowComponent,
public virtual PortableServer::RefCountServantBase
{

public:
RTObject_impl(Manager* manager);
RTObject_impl(CORBA::ORB_ptr orb, PortableServer::POA_ptr poa);
virtual ~RTObject_impl();

protected:
virtual ReturnCode_t onInitialize();
virtual ReturnCode_t onFinalize();
virtual ReturnCode_t onStartup(RTC::UniqueId ec_id);
virtual ReturnCode_t onShutdown(RTC::UniqueId ec_id);
virtual ReturnCode_t onActivated(RTC::UniqueId ec_id);
virtual ReturnCode_t onDeactivated(RTC::UniqueId ec_id);
virtual ReturnCode_t onExecute(RTC::UniqueId ec_id);
virtual ReturnCode_t onAborting(RTC::UniqueId ec_id);
virtual ReturnCode_t onError(RTC::UniqueId ec_id);
virtual ReturnCode_t onReset(RTC::UniqueId ec_id);
virtual ReturnCode_t onStateUpdate(RTC::UniqueId ec_id);
virtual ReturnCode_t onRateChanged(RTC::UniqueId ec_id);
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public:
virtual ReturnCode_t initialize()
throw (CORBA::SystemException);
...

};

Listing 3. The OpenRTM component signature.

2.1.3 Player

Player is a software package developed at the University of Southern California. The main
objective of Player is to simplify the access to hardware resources and devices for higher-level
or client robotics modules and applications (e.g. localization, path planning, etc). Player can
be viewed as an application server interfacing with robot hardware devices and user-developed
client programs.

Figure 2.6 depicts a player-based application consisting of server space and client space code.
In client space an application developer uses player client libraries and APIs to access the hard-
ware resources in server space. All the communication between clients and the player server
takes place through message queues. A message queue is associated with each player device. De-
vices themselves are in some sense an aggregation of hardware device drivers and interfaces for
accessing the driver functionality. Therefore, anything incoming/outgoing into message queues
is then relayed to drivers, which take care of publishing data or subscribing to data through a
queue of the device they are part of. Note also, that in addition to physical hardware devices,
the player server allows to interface with virtual devices, which can exist on simulated robot
platforms. These virtual platforms may be present either in Stage (2D) or in Gazebo (3D)
graphical simulators [20, 21, 22, 23, 24]. Since the Player server functions as an application

Figure 2.6: The Player server implementation model.

server all the device functionality it presents is either precompiled into it or loaded as plugins.
These plugins/precompiled drivers are of shared object format (.so) and are device factories. In
order to instantiate particular devices the developer needs to indicate them in the Player server
configuration file (.cfg file). This file contains such information as driver name, interface types
of this driver, device parameters, etc. Listing 4 shows an excerpt of such a configuration file as
taken from an example Player installation.

driver
(

name "urglaser"
provides ["laser:0"]
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port "/dev/ttyS0"
#port "/dev/ttyACM0"
pose [0.05 0.0 0.0]
min_angle -115.0
max_angle 115.0
use_serial 1
baud 115200
alwayson 0

)
driver
(

name "vfh"
provides ["position2d:1"]
requires ["position2d:0" "laser2d:0"]
cell_size 0.1
window_diameter 61
sector_angle 1
safety_dist 0.3
max_speed 0.3
max_turnrate_0ms 50
max_turnrate_1ms 30

)

Listing 4. Illustration of Player configuration file internals.

This device-related information is described by special keywords which are part of the Player
interface specification. The most important ones of these are name, requires, and provides.
The name keyword serves as an identifier for the Player server and tells which driver should be
instantiated. After the server has instantiated a driver to make it accessible to clients, this driver
should declare its interfaces. These interfaces could have required or provided polarities. For
a complete reference of configuration keywords check the Player interface specification [25].

The application programmer point of view: To understand the inner workings of Player
it is helpful to look into how the server knows how to choose the indicated driver from the
precompiled/plugin drivers and instantiate it. Additonally, we will try to show how messages
from client space are delivered to the right device.

When the Player server is launched with a configuration file specifying the underlying hard-
ware resources, the first thing it does is to check a driver name in the driver table and register
it. The driver table is kept inside the Player server. This procedure is valid when the driver is
part of the player core. If driver is in the form of a plugin/shared library, then the name of the
shared library which implements the driver needs to be provided. After this process, the Player
server reads the information about the interface which is also in the same declaration block in
the configuration file (see Listing 4). As illustrated by the listing, there is a special syntax to
declare an interface for the driver. This syntax provides information on how many instances of
this particular interface should be created (for details, see [25]). Then the type of the interface is
matched with appropriate interface CODE (ID) to create that interface. This is needed because
each interface has its own specific data and command message semantics. That is, there is a
predefined list of data structures and commands that each interface can communicate [25]. Each
interface specific message consists of the following headers:

• Relevant constants (size limits, etc.)

• Message subtypes

– Data subtypes - defines code for a data header of the message
– Command subtypes - defines code for a command header of the message
– Request/reply subtypes - defines code for request/reply header of the message
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• Utility structures - defines structures that appear inside messages.

• Message structures

– Data structures - defines data messages that can be communicated through this in-
terface.

– Command structures - defines command messages that can be communicated through
this interface.

– Request/reply structures - defines request/reply messages that can be communicated
through this interfaces.

Listing 5 provides an overview of the message consituents for a localization interface; the excerpt
is taken from a Player manual [25, 23].

#define PLAYER_LOCALIZE_DATA_HYPOTHS 1
Data subtype: pose hypotheses.
#define PLAYER_LOCALIZE_REQ_SET_POSE 1
Request/reply subtype: set pose hypothesis.
#define PLAYER_LOCALIZE_REQ_GET_PARTICLES 2
Request/reply subtype: get particle set.
typedef player_localize_hypoth player_localize_hypoth_t
Hypothesis format.
typedef player_localize_data player_localize_data_t
Data: hypotheses (PLAYER_LOCALIZE_DATA_HYPOTHS).
typedef player_localize_set_pose player_localize_set_pose_t
Request/reply: Set the robot pose estimate.
typedef player_localize_particle player_localize_particle_t
A particle.
typedef player_localize_get_particles player_localize_get_particles_t
Request/reply: Get particles.

Listing 5. An example Player interface specification.

Based on the discussion above one can consider the Player server a real component-based software
system. Component is used as a relative term here and refers to an entity with its own execution
context and interaction endpoints. A more thorough definition of a component is given in Section
2.2. The Player server can be considered as a component with three different interface semantics
based on the various type of information that is communicated to and from it [25]. These are
DATA, COMMAND, and REQUEST/REPLY. Listing 6 shows possible message subtype semantics and
their respective codes.

#define PLAYER_MSGTYPE_DATA 1
A data message.
#define PLAYER_MSGTYPE_CMD 2
A command message.
#define PLAYER_MSGTYPE_REQ 3
A request message.
#define PLAYER_MSGTYPE_RESP_ACK 4
A positive response message.
#define PLAYER_MSGTYPE_SYNCH 5
A synch message.
#define PLAYER_MSGTYPE_RESP_NACK 6

Listing 6. Example of various Player message subtypes.

In Player, clients can use two modes for data transmission: PUSH and PULL. These modes affect
a client’s message queues only, i.e. they do not affect how messages are received from clients on
the server side. In PUSH mode all messages are communicated as soon as possible, whereas in
PULL mode the following holds[25]:
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• A message is only sent to a client when it is marked as ready in client’s message queue.

• PLAYER_MSGTYPE_DATA messages are not marked as ready until the client requests data.

• PLAYER_MSGTYPE_RESP_ACK and PLAYER_MSGTYPE_RESP_NACK message types are marked as
ready upon entering the queue.

• When a PLAYER_PLAYER_REQ_DATA message is received, all messages in the client’s queue
are marked as ready.

Figure 2.7: Player component model.

The Player driver/plugin can be considered to be a component in the given context, because it
is reusable by other player software, has strictly predefined interfaces, provides a functionality,
is in binary form and can be composed with other drivers/plugins to provide more complex
functionality to clients. As mentioned in the paragraph above these drivers interfaces can cope
with DATA, COMMAND, and REQUEST/REPLY semantics. Here the difference between COMMAND and
REQUEST/REPLY is that in the latter client and server need to synchronize through ACK or NACK
messages. Therefore, the Player driver can be depicted as in Figure 2.7.

class Driver
{

private:
...
protected:
...
public:
...
virtual int Setup() = 0;
virtual int Shutdown() = 0;
virtual void Main(void);
virtual void MainQuit(void);
....

};

Listing 7. An example of a Player driver signature.

All Player drivers/plugins have their own single thread of execution. Listing 7 describes the
Driver class definition and its life cycle management method prototypes. The Player driver goes
through three main states during its life cycle:

• Setup: In this state driver is initialized and is active when the first client subscribes.

• Shutdown: In this state driver finishes execution and is active when the last client unsub-
scribes.

• Main: In this state, the driver performs its main functionality. After execution finished,
the thread exits the Main state and goes into the auxiliary MainQuit state, which performs
additional cleanup when the thread exits.
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2.1.4 ROS

The Robot Operating System (ROS) is software developed at the start-up company Willow
Garage. Literally, ROS is not a component-oriented software as defined in [26]. It does not
define any specific computation unit model with interaction endpoints as it has been in other
systems considered so far (sections 2.1.1 and 2.1.2). But like in many programming paradigms
(functions in functional programming, objects in object-orientation etc), ROS also strives to build
applications from ‘modular units’. In the ROS programming model, the modular programming
unit is a node. The node can be considered as a block of functional code performing some
sort of computation in a loop. The results of these computations are not available to external
parties as long as there is no an interaction endpoint attached to the node. ROS defines two
types of such interaction endpoints. The distinction is made with respect to the semantics of
information communicated through an endpoint and how those pieces of information should be
communicated. Before delving into details of each endpoint type, one needs to emphasize that
in ROS all the necessary information exchange among nodes is performed through messages.

Messages are strictly typed data structures. There can be simple data structure and com-
pound data structure messages. Compound messages can be formed by nesting other arbitrarily
complex data structures. In order to achieve platform independence (here platform means the
implementation language) as well as to facilitate definition of user defined data types, all mes-
sages in ROS are described using the Message Description Language. Message specification
is stored in .msg text files which basically consist of two parts, fields and constants. Fields rep-
resent the data type. In addition to a simple field:constant pair, messages may have a header,
which provides meta-information about the message. Like in other systems already reviewed and
in interacting software systems in general, communicated data types are part of the interface
contract between a producer and a consumer. That is, in ROS for nodes to understand each
other they need to agree on the message types. Listing 8 below shows a very simple description file
for a multi-dimensional array of 32-bit floating point numbers; in this listing MultiArrayLayout
is also a message specified in another description file.

MultiArrayLayout layout
float32[] data

Listing 8. ‘.msg’ file definition.

The following types of endpoints are foreseen in ROS:

• In case of the exchanged information having data semantics (e.g. data from sensors)
and being communicated mostly asynchronously (non-blocking mode) between invoker and
invokee, the endpoint is analogous to the data ports in OpenRTM (see Section 2.1.2) and
OROCOS (see Section 2.1.1). In ROS, this functionality is achieved through introduction
of the messages and the concept of topics to which the messages are published. topic serves
as an identifier for the content of a message. The publisher node publishes its messages to
a particular topic and any interested subscriber node can subscribe to this topic. There can
be multiple nodes publishing to the same topic or multiple topics, as well as many nodes
subscribing to the data on those topics. Such exchange of data has one-way semantics
and is the corner stone of a publisher/subscriber interaction model. Usually neither the
publishers nor the subsribers are aware of each others existance, i.e. they are completely
decoupled from each other and the only away for them to learn about topics/data of
interest is through a naming service. In ROS, this functionality is performed by the master
node. The master node keeps track of all the publishers and topics they publish to. Thus,
if any subscriber requires data, the first thing it does is to learn from the master node
the list of existing topics. Note that in this three-way interaction model (publisher/master,
master/subscriber, publisher/subscriber) no actual data is routed through the master node.
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• In case of the exchanged information having command semantics and being communicated
mostly synchronously (blocking mode) between invoker and invokee, the endpoint is anal-
ogous to service ports in OpenRTM (see Section 2.1.2). In ROS, this functionality is
achieved through introduction of a service concept. The service is defined by a string
name and a pair of messages, a request and a reply message (also check Section 2.1.3 for
similar concepts). Analogous to messages, services are described using the Sevice Descrip-
tion Language, which directly builds upon the Message Description Language. Therefore,
any two messages files concatenated with ‘- - -’ form a service description file. A .srv file
specifies request and response parameters for a service. As in the case of .msg, they may
also have header containing meta-information about the service. Listing 9 below shows an
example of a service description file as it is given in the ROS tutorial [27]. Unlike messages,
it is not possible to concatenate services. In ROS this makes sense, because in general two
arbitrary operations, which are eventually executed upon a service request, cannot sim-
ply be aggregated. Another difference of services compared to publishing of data is that
services have two-way semantics.

int64 a //request parameter1
int64 b //request parameter2
---
int64 sum //response value

Listing 9. ‘.srv’ file content.

Based on the discussion above, a ROS “pseudo-component” can be represented as in Figure
2.8. Both publisher/subscriber and request/reply type of interactions among nodes are defined

Figure 2.8: ROS pseudo-component model.

through the XML-RPC high-level messaging protocol. Standard XML-RPC specifies how the
messages should be encoded in XML format, what interaction policies communicating parties
use to exchange those messages, and what transport protocol to use to transport messages from
one party to another [28, 29]. In this process, XML-RPC also takes care of serializing and
deserializing message content. Such structuring of XML-RPC messaging is also used in ROS.
That is

• The ROS Message Description Language is similar to XML-RPC data model and allows
to specify message data types. But unlike XML-RPC, it uses custom text syntax rather
than XML.

• The ROS Service Description Language (SDL) is in line with XML-RPC request/response
structures. In both one can describe service signatures (i.e. name, parameters, return
values etc).

• In terms of tranport protocols, ROS relies on TCP and UDP, so does XML-RPC, though
XML-RPC messaging is often embedded in HTML and transported through high level
HTTP protocol [28, 29].
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The application programmer point of view: In order to utilize ROS functionality a de-
veloper needs to program nodes using client libraries, roscpp, rospython. From the deployment
point of view, each ROS node is a stand-alone process, thus has its own main loop of execution.
Unlike other frameworks, ROS nodes do not define any specific life cycle state machines. This
is achieved through the Resource Acquisition Is Initialisation (RAII) interface of a node. The
developer just needs to initialize the ROS environment through the ros::init() function and
create a NodeHandle(), which is responsible for instantiating everything necessary for that node
(e.g. threads, sockets etc). Listing 10 below shows how a data-driven ROS node looks like in
C++; the example is provided in ROS tutorials [27, 30].

1 int main(int argc, char **argv)
2 {
3 ros::init(argc, argv, "talker");
4 ros::NodeHandle n;
5 ros::Publisher pub = n.advertise<std_msgs::String>("chatter", 1000);
6
7 int count = 0;
8 ros::Rate r(10);
9 while (n.ok())
10 {
11 std_msgs::String msg;
12 std::stringstream ss;
13 ss << "hello world " << count;
14 ROS_INFO("%s", ss.str().c_str());
15 msg.data = ss.str();
16
17 pub.publish(msg);
18 ++count;
19
20 ros::spinOnce();
21 r.sleep();
22 }
23 return 0;
24 }

Listing 10. ROS node in C++.

After allocating the necessary resources to the node (line 4), a data port is attached to it and
the data messages from it will be advertized at the topic “chatter” with queue size of 1000 bytes
(line 5). These data are then published by invoking publish() (line 17).
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2.2 Analysis and Comparison of Component Models

2.2.1 Introduction and Essential BCM

The previous section provided general information on some of the current component-based
software approaches in robotics. In this section we survey and compare the primary constructs of
the component models underlying each system. The comparison will also include some additional
software systems which have not been described above). The comparison is performed with
respect to the draft BRICS component meta-model (BCM)2.9 which we take as a reference and
describe below. Note that it does not imply in any way that the BRICS component model is the
best choice, it just simplifies the evaluation process, because of the existance of the reference.
We start by describing a number of concepts and respective modelling primitives which are used
in BRICS component meta-model.

1. Component: A component is “a convenient approach to encapsulate robot functionality
(access to hardware devices, simulation tools, functional libraries, etc.) in order to make
them interoperable and composable, no matter what programming language, operating sys-
tem, computing architecture, or communication protocol is used.” [26, 6].

2. Port: In the context of BCM, a port is a software component interface (e.g. scanner2D,
position3D), which groups a set of operations (e.g. sendScan(), getPos()) that can only
communicate information with data semantics to and from other component ports in pub-
lisher/subscriber mode (e.g. a set of scan points from a laserscanner, or an array of odom-
etry values from a localisation component). That is, a port represents the data flow of the
BCM. Therefore, an inter-component interaction policy is part of the data flow interface
and can informally be described by the following expression:

BCM_port = functional_interface + publisher/subscriber_interaction_policy

3. Interface: In BCM, an interface is a software component interface (e.g. scanner2D,
position3D) which groups a set of operations (e.g. setApexAngle(), setResolution()) that
can only communicate information with command semantics (e.g setting device/algorithm
configurations). In other words, it represents component control flow. In the context of
several of the robot software systems presented above, a BCM interface is also referred to as
a service (see e.g. Section 2.1.2). As in the case of a port, an inter-component interaction
policy is part of the BCM interface in the form of a remote procedure call. Informally, this
can be expressed as

BCM_interface = functional_interface + client/server_interaction_policy

4. Operation: An operation is part of the software component interface and is equivalent to
a method in OOP (e.g. setScan(), getConfiguration()). Different types of operations cen
be defined.

5. Connector and Connection: A connector is a language or software archictecture con-
struct used to connect components. Since it is a construct, it can be instantiated with
different annotations, such as types and policies, e.g. type → TAO, AMQP, etc; policy
→ publisher/subscriber, client/server, peer-to-peer, etc). A connection is the concept that
defines whether components are connected through their particular endpoints/ports. Ad-
ditionally, the connection is a system model-level primitive.

6. State Machines: The execution model, i.e. the sequence of statements executed during
runtime, is defined by a state machine. BCM actually uses several state machines for
well-defined purposes:
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• The component-internal life cyle state machine defines the phases of the life cycle of a
component instance, starting from the initialization of ports, interfaces, and resource
allocation, to cleanup and execution of the actual component functionality/algorithm.
In BCM, the life cycle state machine consists of three states init, body, final and well-
defined transitions between them.

• The functional algorithm state machine is a second level execution manager — the
first level is the component life cycle manager — and runs within the first level body
state. BCM does currently not define a particular execution model for this level.

• The interface state machine defines stateless and stateful interfaces. BCM introduces
contracts for the component service interfaces. The contracts are specified as state
machines which are part of the service interface and define constraints on the execution
order of the operations specified by the interface. Depending on the specification of
the state machine component a service interface can be stateful or stateless.

7. Data Types: BCM specifies a number of predefined data types for use in communication
between components. These include a comprehensive set of primitive data types and a set
of commonly used compound data types. The latter conveys that developers can define
their own data types which follow particular requirements for component data exchange.

8. Operation Mode: This concept relates to the deployment aspect of the component. The
component can be either in asynchronous, synchronous or any execution modes.

Figure 2.9: Simplified brics component model.
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Having briefly explained BCM entities, we introduce a simple evaluation method based on the
analysis results of other component models. One of the major objectives of defining BCM and
implementing toolchain support around it is to ensure interoperability among component-based
robotics frameworks. Therefore the outcome of this evaluation should show how difficult it is to
achieve this goal in terms of the existing BCM. The evaluation results are delivered in the form
of tables indicating the amount of effort required to implement or map a feature of particular
framework in terms of BCM entities. To keep initial process simple there have been three levels
of effort defined, which are:

• � - almost no effort to map

• 	 - average effort to map

• ⊕ - considerable effort to map

At the same time only coordination and communication primitives of the models are com-
pared. We would like to emphasize that this evaluation approach is not purely objective, because
it requires one to know and be experienced with technical details of each framework.

BCM Port Interface State Machine Connection
SW system name � 	 ⊕ �

Table 2.1: Mapping between BRICS CMM constructs and other systems.

2.2.2 ORCA2

1. Port: First of all, ORCA2 component interfaces follow the same template, i.e. they consist
of mostly the same methods. There is no clear distinction on the model level between data
and control flow. When analyzed on the code level, a component’s provides and requires
data interfaces can be considered equal to ports in BCM. But unlike BCM, ORCA2 does
not support explicit port constructs. ORCA2 provides and requires data interfaces all
communicate also using a publisher/subscriber policy.

2. Interface: Similar situation as for ports above. Though, ORCA2 implicitly defines inter-
faces as first class entities, since it also uses the Slice interface defition language of the ICE
middleware to define its components.

3. Operation: There is no explicit distinction between operations in a component interface.
Additionally, there is no such concept as operation type in the context of ORCA2 compo-
nents.

4. Connection: ORCA2 does not feature any explicit constructs to represent connections. In
most cases system builders manually indicate system topology in a file. Information in this
file consists of a component name, the portID it is listening to, the type of the protocol,
and the requires and provides interfaces of the component.

5. State Machines

• Component Internal Life Cyle State Machine: ORCA2 implicitly structures the com-
ponent life cycle across two states, start and stop, which are semantically equivalent
to the init and final states in the BCM state machine. Thus, the BCM life cycle man-
ager can be mapped with minor modifications to a ORCA2 CM life cycle manager.
Here start and stop are only responsible for initialization and cleanup of component
resources, e.g. the component’s main thread is created in the start state.
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• Functional Algorithm State Machine: The ORCA2 component functionality is struc-
tured in initialise, work, finalize states. A main thread which is created in the com-
ponent level start state is attached to this state machine. This can be considered to
be a thread context state machine. There is also a predefined state machine for driver
implementation, which consists of warning, faulty, Ok states.

• Interface State Machine (stateless and stateful interfaces): There is no explicitly de-
fined interface level state machine. All interface by default are stateless (or implicit-
ly/predefined stateful)

6. Data Types: The form of the data types is predefined for each interface. Also, ORCA2
follows BROS guidelines[] on data representation for kinematics and dynamics (e.g. data
structures for velocity, position, force ect).

7. Operation Mode: ORCA2 relies on the ICE middleware (IceUtil:Thread) threading, so
one needs to set the appropriate mode through Ice runtime if it is possible, otherwise Ice
schedules the threads itself.

Based on the evaluation above we can conclude on how much effort it will require to instatiate
ORCA2 CM based on BCM.

BCM Port Interface State Machine Connection
ORCA2 � � ⊕ 	

Table 2.2: Mapping between BCM constructs and ORCA2.

2.2.3 OpenRTM

1. Port: OpenRTM components have similar constructs with the same semantics and similar
contexts as defined in BCM. OpenRTM CM includes port as stand-alone construct. Ports
are unidirectional as in BCM and are used to transfer data in publisher/subscriber mode.
In OpenRTM, components that have only data ports for interaction are referred to as data
flow components. OpenRTM allows to define a polarity (required, provided) for a port.

2. Interface: As in BCM, an interface in OpenRTM represents mostly control flow semantics
and is referred to as a service port. It transfers information in client/server mode as in
BCM. It is defined as a separate construct.

3. Operation: A concept of operation or operation type is not explicitly specified in Open-
RTM. Although it provides a configuration interface in addition to data and service ports.

4. Connection: OpenRTM models inter-component interactions through the connectors which
are part of the framework. Connectors are specified through their connector profiles which
contain a connector name, an id, the ports it is connecting, and additional attributes.
There is no explicit support for connector objects. Therefore they are implicitly defined
by the connections between components.

5. State Machines: As in BCM, OpenRTM also distinguishes between functional (core logic
in OpenRTM terminology) and container contexts on the model level, thereby defining
different execution models. But OpenRTM does not describe explicit hierarchical relations,
neither on the model level nor on the code level between these state machines. This
sometimes lead to confusion.

c© 2010 by BRICS Team at BRSU 26 Revision 1.0



Chapter 2. Component Technologies 2.2. Analysis and Comparison of Component Models

• Component Internal Life Cyle State Machine: This is part of the container context.
OpenRTM defines a state machine consisting of created, alive, final states. This
specifies whether a component was created and with what resources, parameters and
whether it is waiting for an activity — this term is defined in the context of OpenRTM
and has similar semantics as a task) — to execute.
• Functional Algorithm State Machine: This is part of the core logic of the component

and is related to the execution context or thread state machine, which is composed of
stopped and running states. As soon as the component is in running state, the core
logic will be executing according to state sequence inactive, active, error.
• Interface State Machine (stateless and stateful interfaces): There is no explicit speci-

fication of interface protocol in OperRTM. By default, all the interfaces are stateless
(or implicitly/predefined stateful).

6. Data Types: OpenRTM relies on UML as well as IDL primitive types. It also defines type
Any. There are no interface-specific data types (e.g. forceVector, positionVector etc)
as in systems such as Player and ORCA2.

7. Operation Mode: OpenRTM allows the definition of different thread execution modes as in
BCM. This is referred to as execution type. There are periodic, event driven, other modes.
So there is a one-to-one match with BCM operation modes.

BCM Port Interface State Machine Connection
OpenRTM � � ⊕ 	

Table 2.3: Mapping between BRICS component model constructs and OpenRTM.

2.2.4 GenoM

1. Port: The concept of port does not exist in its given interpretation in GenoM modules. In
order to exchange data, GenoM modules use posters, which are sections of shared memory.
There are two kinds of posters: control posters, which contain information on the state of
the module, running services and activities, client IDs, thread periods, etc, and functional
posters, which contain data shared between modules (e.g. sensor data). Additionally,
ports in BCM have publisher/subscriber semantics and are transmitted in asynchronous
mode, whereas in GenoM all communication has synchronous semantics [14, 15, 16, 17].

2. Interface: GenoM modules use a request/reply library interface to interact with each other,
which is semantically equal to provides/requires services. There can be two types of re-
quests: control requests and execution requests. They are both passed over to the
module controller thread and the execution engine, respectively.

3. Operation: Operations as defined in BCM are not existent, but it is possible to relate them
to the request/reply interface of the module.

4. Connection: Connections do not exist as a separate entity. The developer needs to specify
in model description file for each model which shared memory section it needs to have access
to. On the request/reply interface level connections are set up through a TCL interpreter,
which plays the role of an application server to all running modules. The developer writes
a TCL script in which he defines the module connections. This is very similar to the
Player approach, where the role of the TCL interpreter is taken by the Player device server
[12, 13].
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5. State Machines:

• Component Internal Life Cyle State Machine: This is defined in a module descrip-
tion file within the context of a module execution task. It is not predefined in the
framework itself, so that the developer is free to define his own life cycle manager.

• Functional Algorithm State Machine: Each request, regardless of its type (control or
execution), has its own state machine which can be defined in the module description
file. The form and size of these state machines are restricted to be a subset of the
super-state machine which is predefined in the system and consists of 6 states, START,
EXEC, SLEEP, END, FAIL, ZOMBIE, INTER, ETHER, and transitions between
them. When an activity is in one of these states, a function associated with this
state and known as a codel is performed. Since request-associated state machines are
subsets of the predefined super-state machine, a user is not required to implement
codels for the states that he considers not necessary.

• Interface State Machine (stateless and stateful interfaces): This does not exist, and,
by default, a request/reply interface is stateful and a functional poster interface (data
interface) is stateless.

6. Data Types: GenoM does not support any interface-specific data types, but supports both
simple and complex data types as they are defined in the C programming lanaguage.

7. Operation Mode: GenoM allows to specify a thread context (referred to as an execution
task context) with information including periodicity, period, priority, stack size, and life
cycle state machine in the module description file. It specifically supports periodic and
aperiodic execution modes.

BCM Port Interface State Machine Connection
Genom 	 	 ⊕ ⊕

Table 2.4: Mapping between BRICS CMM constructs and GenoM.

2.2.5 OPRoS

1. Port: OPRoS explicitly defines different types of ports. The BCM port concept is seman-
tically equivalent to OPRoS data and event ports. As in BCM, the data is transferred in
publisher/subscriber mode. Note, that only non-blocking call are possible through data
port.

2. Interface: There is no a construct defining an interface as such in OPRoS, but there is a
semantically equivalent port type, the method port. Method ports support client/server
type of interaction for information exchange. As most of the software systems above, the
method interface/port makes up a component’s control flow, whereas the data port/event
interface makes up the data flow. Additionally, the type of inter-component interaction is
part of the interface definition. That is, publisher/subscriber is always associated with data
ports, and client/server with method interfaces. Also note that a method port interface
can function either in blocking or non-blocking mode.

3. Operation: There is no explicit construct describing operations of the interface. Interface
operations can be blocking or non-blocking as specified by their synchronization property.
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4. Connection: Only method ports which have matching method profiles can interact with
each other.

5. State Machines:

• Component Internal Life Cyle State Machine: This state machine is managed by
the OPRoS component container. All components follow the same predefined life
cycle state machine, which is composed of 6 states, CREATED, READY, RUNNING,
ERROR, STOPPED, SUSPENDED, and the transitions between them.

• Functional Algorithm State Machine: There is no explicit state machine for algorithm
execution.

• Interface State Machine (stateless and stateful interfaces): There is no explicit state
machine or any other means to describe stateful and stateless interfaces.

6. Data Types: Not foreseen to be specified.

7. Operation Mode: Not foreseen to be specified.

BCM Port Interface State Machine Connection
OPRoS � � ⊕ ⊕

Table 2.5: Mapping between BRICS CMM constructs and OPRoS.

2.2.6 ROS

1. Port: ROS nodes have constructs with similar semantics and context as ports defined in
BCM. These constructs are data publishers and subscribers that are attached to the node.
For details refer to 2.1.4.

2. Interface: ROS services are analogous to interfaces. As in the case of publisher and sub-
scriber, services are not part of the node, but are defined with its context. They provide
two-way communication semantics 2.1.4.

3. Operation: Does not exist in a form similar to BCM.

4. Connection: Does not exist in a form similar to BCM.

5. State Machines: Does not exist in a form similar to BCM.

• Component Internal Life Cyle State Machine: Does not exist in a form similar to
BCM.

• Functional Algorithm State Machine: Does not exist in a form similar to BCM.

• Interface State Machine (stateless and stateful interfaces): Does not exist in a form
similar to BCM.

6. Data Types: A predefined set of robotics-specific and standard data types exists. The
developer can also define custom data structures using a Message Description Language
2.1.4.

7. Operation Mode: Does not exist in a form similar to BCM.
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BCM Port Interface State Machine Connection
ROS � � 	 	

Table 2.6: Mapping between BRICS CMM constructs and ROS.

2.2.7 OROCOS

1. Port: OROCOS components have similar constructs used with the same semantics and
similar context as in BCM.

2. Interface: The BCM interface is equivalent to an OROCOS method.

3. Operation: Each of the interface types defined in OROCOS is a grouping of operations.
These operations are equivalent to their BCM couterparts.

4. Connection: OROCOS provides an explicit connection concept between components.

5. State Machines:

• Component Internal Life Cyle State Machine: An OROCOS state machine is com-
posed of three main states (see 2.1.1), which can be mapped onto the BCM life cycle
state machine.

• Functional Algorithm State Machine: In OROCOS the developer can define custom
state machines which are executed for instance when an event arrives at an event port.

• Interface State Machine (stateless and stateful interfaces): There is no explicit sepa-
ration of stateless and stateful interfaces.

6. Data Types: OROCOS provides a set of predefined standard data types as in BCM. One
can also create custom data types.

7. Operation Mode: The OROCOS component operation modes are defined through activities.
There are periodic, sequential, and non-periodic (event-driven) activity types. In BCM, the
component execution mode is specified through annotations. Thus, it is possible to map
between BCM and OROCOS without any problems.

BCM Port Interface State Machine Connection
OROCOS � � � �

Table 2.7: Mapping between BRICS CMM constructs and OROCOS.

2.2.8 Summary of Comparative Analysis

The results of the analysis can be summarized in the following table:

2.3 Conclusions

This chapter provided an almost exhaustive review of component-based software frameworks in
the robotics domain. An attempt was made to objectively analyze and evaluate these robotics
component-based software frameworks. The evaluation was performed with respect to BRICS
Component Model (BCM), which is currently under development. The final goal of BCM is to
incorporate the best practices and most important features from the existing systems and allow
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BCM Port Interface State Machine Connection
ORCA2 � � ⊕ 	
OpenRTM � � ⊕ 	
Genom 	 	 ⊕ ⊕
OPRoS � � ⊕ ⊕
ROS � � 	 	
OROCOS � � � �

Table 2.8: Comparison of component modelling primitives in different robot software systems
with respect to the BRICS component model.

component level interoperability. This work will allow to justify design decisions behind BCM.
During the evaluation process the following points were observed:

• There is not only a zoo of robot software frameworks, but also a zoo of different component
models.

• Most of these component models have almost the same type of component interfaces, i.e.
data ports and service ports.

• Most component models lack an explicit concept of connectors.

• Most component models have similar finite state machine categories for life cycle manage-
ment.

• Most component models come in the form of a framework and there is not much tool support
provided for application design and testing. Exceptions to this situation are OPRoS,
OpenRTM, and ROS, which provide software management and design tool chain.

• Even though most of the components have common features and attributes, there is no
systematic approach to reuse software across the systems. Observing current trends in
robotics software development, it is realistic to expect that the number of new software
packages will grow in the future. This situation is similar to the operating systems domain a
decade ago, when there were a handful of systems which then grew in number. Most of those
systems provided some means for interoperability among each other. A similar approach
should be taken in the robot software domain. Since there is an abundance of robot software
systems and component models out there with largely the same functionalities, and at the
same time there is no way to persuade people to use The Grand Unifying Solution, the
best approach to make progress is to achieve interoperability between existing systems on
different levels, i.e. on component level, model level, algorithm level, etc.
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Chapter 3

Communication Middleware

Makarenko et al.[31] analysed different robotic software frameworks, like Player[32], Orocos[7],
and YARP[33], and concluded that all of these frameworks are faced with distributed communi-
cation and computation issues. Due to the distributed nature of todays robotic systems this is
not surprising. For instance Johnny, the 2009 world champion in the RoboCup@Home league is
a fully distributed system, e.g. consumer and producer of laser scans are physically distributed
connected via an ethernet network [34]. Having a distributed system, it is necessary to address
several problems. Ranging from How is the information encoded? to How is the data trans-
lation between different machines managed?. As in other domains (automotive, aviation, and
telecommunications), these problems in robotics can be solved by making use of middleware
technologies. Besides solving the aforementioned challenges, these middleware technologies hide
most of the complexities of distributed systems programming from the application developer. In-
terestingly, in robotics there is no single middleware technology exclusively used. In fact, every
robotic framework comes with it’s own middleware technology, which is either handcrafted[32] or
an external package integrated into the robotics software framework[31]. However, the decision
criteria for which middleware technology to choose are quite often quite fuzzy and not well-
defined. Taking this into account, this section attempts to assess middleware technologies in an
unambiguous manner, and serves as a screening of the current marketplace in communication
middleware technologies.

The remainder of this section is structured as follows. Section 3.1 screens the current market-
place of communication middleware technologies and compiles and categorizes an exhaustive list
of relevant technologies. In Section 3.2, the technologies are distinguished between specifications
and implementations, briefly described, and compared with respect to some previously defined
characteristics. Section 3.3 draws conclusions and gives some recommendations.

3.1 The Marketplace of Communication Middleware

The current marketplace for middleware technologies is confusing and almost daunting1. How-
ever, several authors already surveyed the current marketplace and tried to categorise the avail-
able spectrum of middleware technology. One feasible approach to categorise different middleware
technologies is by their means of communication. In [35], Emmerich reviewed state-of-the-art
middleware technologies from a software engineering point of view. For doing this, Emmerich
introduced the following three middleware classes.

• Message-oriented Middleware (MOM): In a message-oriented middleware, messages
are the means of communication between applications. Therefore, message-oriented middle-

1Typing middleware in a google search resulted in over 6.390.000 links on January 5th, 2010.
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ware is responsible for the message exchange and generally relies on asynchronous message
passing (fire and forget semantics) leading to loose coupling of senders and receivers.

• Procedure call-oriented Middleware (POM): All middleware which mainly provides
remote procedure calls (RPC) is considered as procedure call-oriented middleware. Proce-
dure call-oriented middleware generally relies on synchronous (and asynchronous) message-
passing in a coupled client/server relation.

• Object-oriented Middleware (OOM): Object-oriented middleware evolved from RPC
and applies those principles to object orientation.

Within this survey, these classes were used to classify the middleware technologies from Table
3.1. The classification is shown in the third column. The list has been compiled from various
sources including scientific articles from of the robotics domain. The first column labels the name
of the middleware technology. The name refers to a concrete implementation (e.g. mom4j)
and not to a specification (e.g. mom4j is an implementation of the Java Message Service
(JMS) specification). In the second column the license under which the middleware technology
is available is mentioned. Please note that the entry Comm. means that the middleware solution
is commercial. The acronyms APL, GPL, LGPL and BSD are referring to the well-known open-
source licenses Apache License (APL), GNU General Public License (GPL), GNU Lesser General
Public License (LGPL) and BSD License (BSD)2. The middleware Spread comes with it’s own
license, which is slightly different from the BSD license. The MPI library Boost.MPI also comes
with it’s own license. ZeroMQ, omniORB and TIPC are available under a dual license, which
means that some parts (e.g. tools in OmniORB (e.g. for debugging) are under GPL and the
middleware itself is under LGPL of the projects have different license conditions. Due to the
fact that MilSoft, CoreDX, ORBACUS and webMethods are commercial solutions they
are not really further considered in this survey. Furthermore, the .NET platform by Microsoft
is not considered as well. .NET is still a Microsoft-only solution and therefore not suitable for
heterogenous environments as in robotics. In the fourth column of the table the interested reader
will find website references for further information.

3.2 Assessment of Communication Middlewares

In the following the middleware technologies (from Table 3.1) are differentiated in associated
specifications and implementations, briefly described, and compared with respect to core char-
acteristics such as supported platforms and programming languages (see tables 3.2 and 3.3).

3.2.1 Specification versus Implementation

As mentioned above, Table 3.1 shows only implemented middleware solutions. Some of these
implementations are associated to specifications. This means they implement a particular spec-
ification. To avoid adulterated assesment (e.g. comparision among specification and implemen-
tation) it is necessary to figure out which middleware corresponds to which specification. The
breakdown in specification and associated implementation is shown in Table 3.2. In the follow-
ing paragraphs, specifications and their associated implementations are described (e.g. Data
Distribution Service) as well as pure implementations without associated specifications (e.g.
TIPC).

2The licenses are available on http://www.opensource.org/licenses (last accessed on 05-01-2010)
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Middleware License Class Link for more information
OpenSplice LGPL MOM opensplice.com/
MilSoft Comm. MOM dds.milsoft.com.tr/en/dds-home.php
CoreDX Comm. MOM twinoakscomputing.com/coredx.php
Apache Qpid APL MOM qpid.apache.org/
ZeroMQ LGPL/GPL MOM zeromq.org/
webMethods Comm. MOM softwareag.com/corporate/default.asp
mom4j LGPL MOM mom4j.sourceforge.net/
Boost.MPI Boost POM boost.org/doc/libs/1_39_0/doc/html/mpi.html
TIPC BSD/GPL POM tipc.sourceforge.net/
D-Bus GPL OOM freedesktop.org/wiki/Software/dbus
LCM LGPL MOM code.google.com/p/lcm/
Spread Spread Lic. POM spread.org/
omniORB LGPL, GPL OOM omniorb.sourceforge.net/
JacORB LGPL OOM jacorb.org/
TAO LGPL OOM theaceorb.com/
ORBACUS Comm. OOM progress.com/orbacus/index.html
ICE GPL OOM zeroc.com/
XmlRpc++ LGPL POM xmlrpcpp.sourceforge.net/

Table 3.1: Compiled list of different middleware technologies

Specification Middleware
DDS OpenSplice
AMQP Apache Qpid
AMQP ZeroMQ
JMS mom4j
MPI Boost.MPI
CORBA omniORB
CORBA JacORB
CORBA TAO
XmlRpc XmlRpc++

Table 3.2: Middleware specifications and their associated implementations.
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Middleware Java C/C++ C# Python Other
OpenSplice

√ √ √

Apache Qpid
√ √ √ √

Ruby
ZeroMQ

√ √ √ √
Fortran

mom4j
√

Boost.MPI
√

TIPC
√

D-Bus
√ √ √ √

Perl
LCM

√ √ √

Spread
√ √ √

Perl and Ruby
omniORB

√ √

JacORB
√

TAO
√

ICE
√ √ √ √

PHP
XmlRpc++

√

Table 3.3: Middleware implementations and their supported programming languages.

Middleware Linux Windows Other
OpenSplice

√ √

Apache Qpid
√ √

Java
ZeroMQ

√ √
QNX, Mac OS/X

mom4j
√ √

Java
Boost.MPI

√ √

TIPC
√

D-Bus
√ √

LCM
√ √

Java
Spread

√ √
Solaris, FreeBSD

omniORB
√ √

HP-UX, Solaris
JacORB

√ √
VxWorks, and more

TAO
√ √

Mac OS/X, Solaris
ICE

√ √
Mac OS/X

XmlRpc++
√ √

C++ Posix

Table 3.4: Middleware implementations and their supported platforms.
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3.2.2 Data Distribution Service (DDS)

Like CORBA (see Section 3.2.6), the Data Distribution Service is a standard by the OMG con-
sortium. It describes a publish/subscribe service (one-to-one and one-to-many) for data-centric
communication in distributed environments. For that reason, DDS introduces a communication
model with participants as the main entities. These participants are either exclusive publishers or
subscribers, or both. Similar to other message-oriented middleware, publishers/subscribers are
sending/receiving messages associated to a specific topic. Furthermore, the standard describes
the responsibilites of the DDS as follows:

• awareness of message adressing,

• marshalling and demarshalling, and

• delivery.

The standard itself is divided into two independent layers: the Data Centric Publish Subscribe
(DCPS) and the Data Local Reconstruction Layer (DLRL). The former one describes how data
from a publisher to a subscriber is transported according to quality of service constraints. On
the other hand the DLRL describes an API for an event and notification service, which is quite
similiar to the CORBA event service. Due to the fact that the DDS is independent from any
wiring protocol the QoS constraints are dependent on the used transport protocol (e.g. TCP or
UDP).

OpenSplice, developed by PrismTech, implements the OMG Data Distribution Service. Open-
Splice is available as a commercial and a community edition. The community edition is
licensed under LGPL. From a technical point of view, OpenSplice’s main focus is on real-
time capabilities, and therefore reference applications are in the field where real-time is an
important issue (combat systems, aviation, etc.).

3.2.3 Advanced Message Queuing Protocol (AMQP)

Companies like Cisco, IONA, and others specified the Advanced Message Queuing Protocol
(AMQP). AMQP is a protocol for dealing with message-oriented middleware. Precisely, it spec-
ifies how clients connect and use messaging functionality of a message broker provided by third-
party vendor. The message broker is responsible for delivery and storage of the messages.

Apache Qpid: The open source project Apache Qpid implements the AMQP specification.
Qpid provides two implementations of the Qpid messaging service. On is a C++ imple-
mentation, the other a Java implementation. Interestingly, the Java implementation is also
fully compliant with the JMS specification by Sun Microsystems (see Section 3.2.4).

ZeroMQ: The ZeroMQ message-oriented middleware is based on the AMQP model and spec-
ification. In contrast to other message-oriented middleware, ZeroMQ provides different
architectural styles of message brokering. Usually, a central message broker is repsonsible
for message delivering. This centralized architecture has serveral advantages:

• loose coupling of senders and receivers

• lifetime of senders and receivers do not overlap

• broker is resistent to application failures

However, the centralized architecture also has several disadvantages. Firstly, the broker
incurs an excessive amount of network communication. Secondly, due to the potential high
load of the message broker, the broker itself can become a bottleneck and the single point of
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failure of the messaging system. Therefore, ZeroMQ supports different messaging models,
namely broker (as mentioned above), brokerless (peer-to-peer coupling), broker as directory
server (senders and receivers are loosely coupled and they find each other via the directory
broker, but the messaging is done peer-to-peer), distributed broker (multiple brokers, one
each for a specific topic or message queue), distributed directory server (multiple directory
servers to avoid a single point of failure).

3.2.4 Java Message Service (JMS)

The Java Message Service (JMS)3 itself is not a full-fledged middleware. It is an Application Pro-
gramming Interface (API) specified by the Java Consortium to access and use message-oriented
middleware provided by third-party vendors. Like in other message-oriented middleware, mes-
sages in JMS are a means of communication between processes or more precisely applications.
The API itself supports the delivery, production and distribution of messages. Furthermore,
the semantics of delivery (e.g. synchronous, transacted, durable and guaranteed) is attachable
to the messages. Via the Java message interface, the envelope of a message itself is specified.
Messages are composed of three parts: header (destination, delivery mode, and more), properties
(application-specific fields), and body (type of the message, e.g. serialised object). JMS sup-
ports two messaging models: point-to-point (a message is consumed by a single consumer) and
publish/subscribe (a message is consumed by multiple consumer). In the point-to-point case, the
destination of a message is represented as a named queue. The named queue follows the first-
in/first-out principle and the consumer of the message is able to acknowledge the receipt. In the
publish/subscribe case the destination of the message is named by a so called topic. Producers
publish to a topic and consumer subscribe to a topic. In both messaging models the reception of
messages can be in blocking mode (receiver blocks until a message is available) and non-blocking
mode (receiver gets informed by the messaging service when a message is available).

mom4j The open source project mom4j is a Java implementation of the JMS specification.
Currently mom4j is compliant with JMS 1.1, but provides downwards compatiblity to JMS
1.0. Due to the fact that the protocol to access and use mom4j is language independent,
clients are programmable in different programming languages, e.g. Python and Java.

3.2.5 Message Passing Interface (MPI)

The Message Passing Interface (MPI) provides a specification for message passing especially in
the field of distributed scientific computing. Comparable to JMS (see Section 3.2.4), MPI specifies
the API but not the implementation. Like Spread and TIPC, MPI introduces groups and group
communication in the same manner as the former do. Moreover, the API provides point-to-
point communication via synchronous sending/receiving, and buffered sending/receiving. From
an architectural point of view, no server or broker for the communication between applications
is needed. It is purely based on the peer-to-peer communication model (group communication
can be considered as an extension). The communication model of MPI guarantees that messages
will not overtake each other.

Boost.MPI Boost.MPI is part of the well-known and popular Boost C++ source library and
supports the functionality which is defined in the MPI 1.1 specification.

3Specification available at http://java.sun.com/products/jms/docs.html (last access 05-01-2010)
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3.2.6 Common Object Request Broker Architecture (CORBA)

The Common Object Request Broker Architecture (CORBA) is a standard architecture for
distributed object-oriented middleware specified by the Object Management Group (OMG)4.
CORBA was the first specification which heavily applied the broker design pattern in a dis-
tributed manner, resulting in providing object-oriented remote procedure calls. Besides remote
procedure calls, CORBA specified numerous additional services like naming service, query ser-
vice, event service, and more.

omniORB implements the CORBA specification and is available for C++ and Python. Om-
niORB is available under Windows, Linux, and several arcane Unix environments like
AIX, UX, and more. From a technical point of view, OmniORB provides a quite inter-
esting thread abstaction framework. A common set of thread operations (e.g. wait(),
wait_until()) on top of different thread implementations (e.g. pthreads under Linux) is
available.

JacORB is a CORBA implementation written in Java and available exclusively for Java plat-
forms. From a technical-point of view JacORB provides the asynchronous method invoca-
tion as specified in Corba 3.0. Furthermore, JacORB implements a subset of the quality of
service policies defined in Chapter 22.2 of the CORBA 3.0 specification. Namely, the sync
scope policy (at which point a invocation returns to the caller, e.g. the invocation returns
after the request has been passed to the transport layer) and the timing policy (definition
of request timings).

TAO is an implementation of the OMG Real-Time CORBA 1.0 specification, developed by
Douglas C. Schmidt at Vanderbilt University. The current version of TAO realizes several
features of the specification as: real-time ORB, invocation timeouts, real-time mutexes, and
more. TAO has been designed for hard real-time applications, however, TAO can be used
for every application where an Object Request Broker is needed. One major advantage
over other CORBA implementations is the efficient, and more importantly, predictable
QoS (Quality of Service) of TAO. TAO has been used not only in robotics (e.g. in MIRO),
but also in other domains as in avionics.

3.2.7 XML Remote Procedure Call (XML-RPC)

The XML-RPC protocol uses XML to encode remote procedure calls (XML as the marshalling
format). Furthermore, the protocol is bound to http as a transport mechanism, because it uses
’request’ and ’response’ http protocol elements to encapsulate remote procedure calls. XML-RPC
showed to be very well suited for building cross-platform client/server applications, because client
and servers don’t need to be written in the same language.

XmlRpc++ is a C++ implementation of the XML-RPC protocol. Due to the fact that
XmlRpc++ is written in standard Posix C++, it is available under several platforms.
XmlRpc++ is some how exotic in this survey. Firstly, the footprint is comparable small.
Secondly, no further library is used (XmlRpc++ make use of the socket library provided
by the host system).

3.2.8 Internet Communication Engine (ICE)

The Internet Communication Engine (ICE) by the company ZeroC is an object-oriented middle-
ware. ICE evolved from experiences by the core CORBA developers. From a non-technical point

4Available at http://www.omg.org/technology/documents/corba_spec_catalog.htm (last access 05-01-2010)
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of view, the Internet Communication Engine is available in two licenses: a GPL version and a
commercial one upon request. Furthermore, the documentation is exhaustive. From a technical
point of view, ICE is quite comparable to CORBA. Like CORBA, ICE adapts the broker design
pattern from network-oriented programming to achieve object-oriented remote procedure calls,
including a specific interface definition language (called Slice) and principles like client-side and
server-side proxies. Beyond remote procedure calls, ICE provides a handful of services.

• IceFreeze introduces object persistence. By the help of the Berkeley DB states of objects
are stored and retreieved upon request.

• IceGrid provides the ICE location service. By making use of the IceGrid functionality it
is possible for clients to discover their servers at runtime. The IceGrid service acts as an
intermediated server and therefore decouples clients and servers.

• IceBox is the application server within the ICE middleware. This means IceBox is re-
sponsible for starting, stopping, and deployment of applications.

• IceStorm is a typical publish/subscribe service. Similar to other approaches, messages
are distributed by their associated topics. Publishers publish to topics and subscribers
subscribe to topics.

• IcePatch2 is a software-update service. By requesting an IcePatch, service clients can
update software versions of specific applications. Note however, that IcePatch is not a
versioning system in the classical sense (e.g. SVN or CVS).

• Glacier2 provides communication through firewalls, hence it is a firewall traversal service
making use of SSL and public key mechanisms.

3.2.9 Transparent Inter-Process Communication (TIPC)

The Transparent Inter-Process Communication (TIPC) framework evolved from cluster comput-
ing projects at Ericsson. Comparable to Spread (see Section 3.2.12), TIPC is a group commu-
nication framework with its own message format. TIPC provides a layer between applications
and the packet transport mechanism, e.g. ATM or Ethernet. Even so, TIPC provides a broad
range of network topologies, both physical and logical. Furthermore, similar to Spread, TIPC
provides the communication infrastructure to send and receive messages in a connection-oriented
and connectionless manner. Furthermore, TIPC provides command line tools to monitor, query,
and configure the communication infrastructure.

3.2.10 D-Bus

The D-Bus interprocess communication (IPC) framework, developed mainly by RedHat, is under
the umbrella of the freedesktop.org project. D-Bus is targeting mainly two IPC issues in
desktop environments:

• communication between applications in the same desktop session, and

• communication between the desktop session and the operating system.

From an architectural point of view, D-Bus is a message bus daemon acting as a server. Appli-
cations (clients) connect to that daemon by making use of the functionality (e.g. connecting to
the daemon, sending messages,..) provided by the library libdbus. Furthermore, the daemon is
responsible for message dispatching between applications (directed), and between the operating
system, and potential applications (undirected). The latter typically happens when a device is
plugged in.
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3.2.11 Lightweight Communications and Marshalling (LCM)

The Lightweight Communications and Marshalling (LCM) project provides a library. Main
purpose of the library is to simplify the message passing and marshaling between distributed
applications. For message passing the library make use of the UDP protocol (especially UDP
multicast), and therefore no guarantees about message ordering and delivery are given. Data
marshalling and demarshalling is achieved by defining LCM types. Based on that type definition
an associated tool generates sourcecode for data marshalling and demarshalling. Due to the
fact that UDP is used as a underlying communication protocol no daemon or server for relaying
the data is needed. From an architectural point of view LCM provides a publish/subscriber
framework. To make the data receivable for subscribers it is necessary that the publisher provides
a so called channel name, which is a string transmitted with each packet that identifies the
contents to receivers. From a robotics point of view it is interesting to note that LCM was used
by the MIT team during the DARPA Grand Challenge. According to the developers, the LCM
library performed quite robust and scaled very well (during the DARPA Grand Challenge).

3.2.12 Spread Toolkit (Spread)

The Spread Toolkit, or shortly Spread [36], is a group communication framework developed by
Amir and Stanton at John Hopkins University. Spread provides a set of services for group com-
munication. Firstly, the abstraction of groups (a name representing a set of processes). Secondly,
the communication infrastructure to send and receive messages between groups and group mem-
bers. The group service provided by Spread aims at scientific computing environments, where
scalability (several thousands of active groups) is crucial. To support this, Spread provides sev-
eral features, such as the agreed ordering of messages to the group, and the recovery of processes
and whole groups in case of failures.

3.3 Conclusions

As shown in this chapter, the communication middleware marketplace is large, with many dif-
ferent technologies, for many different domains and applications. Although it is very difficult to
assess in an unbiased manner, a best effort was undertaken to objectively analyze and evaluate
a number of well-known systems. The analysis allows the following conclusions to be drawn:

• In general, communication middleware technologies try to bridge the physical decoupling
of senders and receivers (or clients and server(s)). From the software side, such decoupling
is desired, because tight coupling leads to complexity, confusion, and suffering. All of the
presented middleware technologies provide some means for decoupling (on different levels).

• The Data Distribution Service implements the decoupling of senders and receivers
through message-orientation. However, DDS is still a very recent standard and very few
open source implementation exists. Therefore, it might be too early to decide whether
DDS is already an option for robotics or not.

• JMS and associated implementations are the de-facto standard for Java-based messaging.
Regrettably, JMS is mainly limited to JAVA and therefore not an option for heterogeneous
(in the sense of programming languages and platforms) environments, as mostly used in
robotics.

• The group communication frameworks Spread and TIPC are mature frameworks for
heterogeneous communication environments. However, the functionality provided by those
environments are too limited for robotics, where features such as persistence are desireable.
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• The most fully developed and mature communication middleware in that survey areCORBA
and ICE. ICE and CORBA (with various implementations) showed to be a feasible mid-
dleware technologie in the robotics domain (as demonstrated in the Orca2 and Orocos
framework). However, such full-fledged middleware solutions tend to be difficult to under-
stand and to use.

• As demonstrated in ROS, the use of XML-RPC is feasible to develop lightweight com-
munication environments and might be an option for robotics.
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Chapter 4

Interface Technologies

4.1 Component Interface Models

Generally, a component can be considered in several different forms based on the context of their
use and the component life cycle. Some notable such views[6] include:

• The specification form describes the behavior of a set of component objects and defines a
unit of implementation. The behavior is defined as a set of interfaces. A realization of a
specification is a component implementation.

• The interface form represents a definition of a set of behaviors/services that a component
can offer or require.

• The implementation form is a realization of a component specification. It is an indepen-
dently deployable unit of software. It needs not be implemented in the form of a single
physical item (e.g. single file).

• The deployed form of a component is a copy of its implementation. Deployment takes place
through registration of the component with the runtime environment. This is required to
identify a particular copy of the same component.

• The object form of a component is an instance of the deployed component and is a runtime
concept. An installed component may have multiple component objects (which require
explicit identification) or a single one (which may be implicit).

In this section we will consider components from the interface form point of view. Our analysis
so far shows that in addition to the component concepts and component-oriented programming
attributes introduced so far, there are various design decisions that need to be made when
developing with components, particularly in distributed computing environments.

Above all, the concept of programming to interfaces emphasizes that a component exposes
only its interfaces as defined during design phase to the outside, i.e. to the developers eventualling
using the component. It should not matter to a system developer how those interfaces/services
were implemented. In this respect two approaches can be distinguished in software community,
both of which have their own merits and drawbacks.

1. Generation of skeleton/template implementations from the given interface definitions. This
is the approach which is commonly adopted in many well-known software standards such as
CORBA and SOA. Here, a component developer has to define component interfaces at the
very beginning. These interface definitions, usually written in special purpose language,
are then parsed by a tool which generates empty templates for implementation code. Since
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some of the well-known robotics software projects rely on above mentioned standards, they
directly inherit this principle. Examples are OpenRTM[3] and Miro[37]. The drawback
of this approach is that interface details have to be decided already at the beginning of
the development, which is often a difficult task. After the skeletons have been generated
there is usually no way to add new or modify existing functionality in the interface without
modifying the implementation. The tool chains supporting this process lack the property
of tracing back any changes from implementation level to interface level, a capability also
known as round tripping. One way to escape this problem is not to allow a direct use of the
automatically generated code but rather to inherit from it. This specialized code has all
the functionality defined on the model/interface level, while being able to extend the base
functionality of the generated code without any problem. For instance, SmartSoft adopts
such an approach in its recent model-driven approach [38, 39].

2. Extraction of required interface definitions from the implementation. Unlike the previous
approach, the decision which operations to expose in the interface is delayed until the time
when component functionality is complete and ready to be deployed. A developer needs
to indicate in his implementation code what interface he wants to expose, which is then
extracted by a special parser tool. This is the approach taken, for instance, by Microsoft
Robotics Developer Studio[40].

Additionally, programming to interfaces (when there is appropriate tool support) relieves a de-
veloper from the burden of developing glue code required in the presence of communication
infrastructure, because this could be standardized through introduction of code templates for
communication. Interface definition language-based code generation allows to overcome many
difficulties related to writing code for distributed applications, but the developers still need to
decide on the interfaces themselves. That is, they need to answer questions like:

• What data types should the arguments and return type of the interface operations have?

• What kind of call semantics should they support?

• Which operations should be made public in the interface?

From the developer point of view, to whom everything usually is just a method call, the approach
often do not differ wrt. this definition. But it would make it much simpler for the user of a
component interface not only to know about its return types and parameters, but also the context
in which an operation should be invoked. Our survey shows that in most of the distributed
software environments, regardless of their application domain, there is clear separation between
the classes of interface methods, although this separation is often implicit and was not intended
initially. In the following, we provide a generic description framework for the component internal
models and their interface categorization approaches.

We begin the analysis by introducing the generic component, i.e. meta-component model,
which specifies generic input and output signals as well as general internal dynamics of a com-
ponent. As depicted in Figure 4.1, we assume that this meta-component has four kinds of I/O
signals:

• Two for input/output or data flow (green arrows)

• Two for ingoing/outgoing commands or execution flow (blue and orange arrows).

This assumption draws from the control theory domain and based on the common denominator
of I/O signals for a physical plant. External or incoming signals (analogous to disturbances
in case of physical object) represent commands to operate/influence the component, whereas
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outgoing signals are issued by the component to interact with other components. These are
the only aspects relevant when dealing with the interface form of the component (see Section
4.1). In case of the internal dynamical model of the component, it is often free form and could
be represented in anything ranging from automata, Petri nets, state charts or decision tables.
In most of the contemporary software systems, the internal dynamical model is represented
by a finite state machine with a number of states and transitions among them. Additionally,
from the structural point of view, a component can be seen as an aggregation of substructures,
where these substructures could be representing communication, computation, configuration, or
coordination aspects of a component model. At the same time, we would like to emphasize that
a meta-component is a generic abstract entity and does not enforce many constraints.

Figure 4.1: Meta-component model.

Interestingly, despite the generic component model defining two categories of interfaces, both
in robotics and non-robotics domains researchers have managed to come up with many much
more detailed component interface schemes. This refinement is based on different attributes of
the interfaces, e.g. context, timeliness, functionality etc. Below, a list of the most commonly used
interface categorization schemes in interface definitions is presented. There is no clear borderline
between different schemes. In a particular component model, several schemes could be used in
combination, often in the form of hierarchical interfaces. Such hierarchies could be not only
conceptual but also implementational.

Figure 4.2: Interface separation schema.

• Functional Scheme: This type of categorization is based on the functionality provided by
the interface, or by physical/virtual device the component represents. It is often in concep-
tual form and introduced to simplify the integration process for the user of a component.
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Example: Let there be a component implementing image capturing functionality on a USB
camera named CameraUSBComp. It performs simple image capturing from the device
without any extra filtering/processing. Also, let there be another component ImageEdge-
FilterComp which receives a raw image produced by CameraUSBComp and performs some
edge extraction algorithm. Then, according to the functional separation scheme, the user
of these components will only see, e.g. CameraUSB/CameraUSBCapture provided by the
first component and ImageEdgeFilter by the second. So, when integrating the functional-
ities of these components into a system a developer needs not be aware of other technical
aspects under these interfaces, such as their communication mode or timing requirements
etc. Figure 4.3 depicts this situation. Often, this interface scheme serves as a group for
more fine-grained public methods of the component.

Figure 4.3: Topology representing functional interfaces of components.

• Data and Execution Flow Scheme: In this approach interfaces are categorized accord-
ing to the type of information flow they carry. This could be either control commands or
data. In most of the software systems where this scheme is adopted, the interface semantics
is decoupled from the component semantics. That is, the former is related to communica-
tion aspect, whereas the latter is related to the computation aspect of the component. The
decoupling is often reached through the concept of a port. This concept is not exclusive to
this scheme, but can also be used with other schemes. It just turns to be often mentioned
in the context of this approach. A port is virtual endpoint of the component through which
it exchanges information with other components. An example to this approach could be
a component with request/reply ports (which transmit execution flow information in syn-
chronous mode), event ports (which transmit either execution or data flow information in
asynchronous mode), and data ports (which transmit data flow information). Figure 4.4
below depicts a graphical representation of such a component.

Figure 4.4: Interface categorization according to data and execution flows

• Aspect-oriented: The 4C Concerns Scheme: Another important design decision,
not only in robotics but also in computer science, is separation of concerns. It defines a
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decomposition of a system into distinct features that overlap as little as possible. The
separation of concerns can be considered orthogonal to an interface separation schema. It
is often a system level process, but could equally be applied to component level primitives.
Usually, four major concerns are identified in a software system [41]:

– Computation is the core of a component. This relates to the implementation of func-
tionality that adds value to the component. This functionality typically requires read
and write access to data from sources outside of this component, as well as some form
of synchronization between the computational activities in multiple components.

– Communication is responsible for bringing data towards computational activities with
the right quality of service, i.e., time, bandwidth, latency, accuracy, priority, etc.

– Configuration allows users of the computation and communication functionalities to
influence the latter’s behavior and performance, by setting properties, determining
communication channels, providing hardware and software resources, and taking care
of their appropriate allocation. It often relates to deployment aspects of the compo-
nent.

– Coordination determines the system level behavior of all cooperating components in
the system (the models of computation) from appropriate selection of the individual
components’ computation and communication behavior.

On the component interface level these aspects could appear as four classes of methods
that the component requires or provides. This is very similar to the previous categorization
scheme using data and execution flows. Figure 4.5 provides an example for how this might
look like.

Figure 4.5: Component interface separation scheme according to 4C concerns.

• Timing Property-Oriented Scheme: This approach is very similar to a data and ex-
ecution flow-oriented separation, that is, the interface classes have similar semantics (see
Figure 4.4). The main difference is that the focus is not on the character of the flow
transmitted but its timing characteristics. In other words, a distinction is made whether
a method call is asynchronous vs synchronous, periodic vs aperiodic, etc. It is notewor-
thy that any synchronous communication is a special case of asynchronous communication
with constraints on call return timing. Therefore, it can be assumed that one could design
a component only with interfaces supporting asynchronous calls. But whether it makes
really sense to do so is another question related to the requirements of transmission and
the nature of data.
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• Hybrid Scheme: This approach is a combination of functional and data and execution
flow-oriented categorization. Interfaces are organized hierarchically (in previous cases, the
hierarchy was mostly conceptual. In this case, hierarchy is used in the real application).
On the top-most level, the interface has a functional description (i.e. it is used for grouping
of operation) and can be used for composing a system based on the functionality provided
by a particular component. Under the hood of functional interface are more fine-grained
methods with data and execution flow semantics. For example, in the Player device server
a particular device X may provide the functional interface range2D which can be used in
system configuration file to connect with other components [25]. A system developer is
not aware of transmission details concerning the timing attributes and semantics of the
call, i.e. whether it is a command or data. But on the implementation level, range2D
is matched with a method which carries particular transmission semantics. In Player,
this semantics is defined in a separate file for all interfaces in Player. These message
definitions are part of Player interface specification. For example, Listing 11 defines a
message subtype for an interface providing/receiving RangeData, whereas Listing 12 defines
a message for a command interface CommandSetVelocity. More details on the Player
approach to component-oriented system development and interface technologies have been
discussed in Section 2.1.

typedef struct player_ranger_data_range
{

uint32_t ranges_count;
double *ranges;

} player_ranger_data_range_t;

Listing 11. Message specification for RangeData interface.

typedef struct player_position3d_cmd_vel
{

player_pose3d_t vel;
uint8_t state;

} player_position3d_cmd_vel_t;

Listing 12. Message specification for CommandSetVelocity interface.

So far, we have been approaching components from a top-down perspective, i.e. through its
interfaces to the external world. We saw that developers can use an interface specification given
in the form of an IDL to generate component skeletons. Additionally, we analyzed how a set of
interfaces attaching different semantics to the methods under that interface can be structured.
This perspective is useful to build systems out of existing components, but it does not say
anything concerning how the components along with their interfaces are implemented 2.1.1.
Additionally, this question directly relates to how components internals are implemented, i.e.
whether the component is in the form of a single class with methods, a collection of functions, a
combination of classes with an execution thread, or any combination of these entities. Depending
on the chosen method of component implementation, we can distinguish two main types of
interfaces [26]:

• Direct or procedural interfaces as in traditional procedural or functional programming

• Indirect or object interfaces as in object-oriented programming

Often, these two approaches are unified under a single concept, by using static objects as a
part of the component. Most component interfaces are of the object interface type (this is the
case because most of the contemporary implementations rely on object-oriented programming
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languages). The main difference between direct and indirect interfaces is that the latter is often
achieved through a mechanism known as dynamic method dispatch/lookup (as it is known in
object-oriented programming). In this mechanism, a method invocation does not only involve
the class which owns the invoked method but also other third-party classes of which neither the
client nor the owner of the interface are aware of.

4.2 Hardware Device Interfaces and Abstractions

Hardware abstractions separate hardware-dependent issues from hardware-independent issues. A
hardware abstraction hierarchy provides generic device models for classes of peripherals found in
robotics systems, such as laser range finders, cameras, and motor controllers. The generic device
models allow to write programs using a consistent API and reduce or minimize dependence on
the underlying hardware.

4.2.1 The Need for Hardware Abstractions

• Portability: Hardware abstraction can minimize the application software dependencies
on specific hardware. This allows to write more portable code, which can run on multiple
hardware platforms.

• Exchangeability: Standardized hardware interfaces make hardware exchange easier.

• Reusability: Generic device classes or interfaces which can be reused by several devices
avoid code replication. Due to the more frequent (re)use, the source code of generic classes
is usually tested more thoroughly and more stable.

• Maintainability: Consistent, standardized hardware interfaces increase the maintainabil-
ity of source code.

Benefits for Application Developers: Hardware abstraction can hide the peculiarities of
vendor-specific device interfaces through well-defined, harmonized interfaces. The application
developer does not have to worry about these peculiarities e.g. low-level communication to the
hardware devices, and can use more convenient, standardized hardware APIs.

Benefits for Device Driver Developers: Each device interface defines a set of functions
necessary to manipulate the particular class of device. When writing a new driver for a peripheral,
these set of driver functions has to be implemented. As a result, the driver development task is
predefined and well documented. In addition, it is possible to use existing hardware abstraction
functions and applications to access the device, which saves software development effort.

4.2.2 Challenges for Hardware Abstraction

In the literature (see e.g. [42]), numerous challenges are described which have to be taken into
account while designing interfaces (APIs) to hardware:

• Interface Stability: If a published generic interface is changed, a possibly very large
number of applications depending on it must be changed. Therefore, generic interfaces
have to be stable and mature. This can only be accomplished with experience and after
thoroughly testing the interfaces on many heterogeneous robotic platforms. Generic inter-
faces should be neither the union nor the intersection (least common denominator) of the
capabilities of the specific hardware devices. The solution often lies somewhere in between.
Sometimes is is possible to stabilize the interface by using more complex data types.
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• Abstraction: Abstraction should emphasize common functionalities and hide device-
specific details not necessarily needed in the interface. Given an arbitrary hardware device
and its often peculiar interface specification, identifying the essential functionality can be
quite challenging.

• Resource Sharing: Many of the sensors and actuators of a robot are used by several
functional components of a robot control architecture, and must be treated as a shared
resources. In order to prevent access collisions and to ensure data integrity, device access
may need to be protected by guards or monitors and by using reservation tokens to manage
device access.

• Runtime Efficiency: Robotics application software developers seldomly can afford to
trade performance for generality. Thus, anything providing more generality may incur
only limited performance penalties with respect to a custom-built solution for interfacing
the hardware device.

• Hardware Architecture Abstraction: Just generalizing hardware devices themselves is
sometimes not enough to achieve interoperability across different robotics hardware plat-
forms and exchangeability of hardware devices within different hardware architectures.
Generalizations often implicitly assume a certain similarity wrt. the hardware architec-
ture, e.g. how a device is physically interfaced with computational devices. In image
acquisition, for instance, some systems connect high quality analog cameras via specific
frame grabber boards (frame grabbers), while other systems use digital cameras directly
connected via a serial bus like IEEE1395/FireWire or USB2.0. Multilevel hierarchical ab-
stractions can provide a range of interfaces from most general to device-specific, and allow
to overcome these problems at least partially.

• Multifunctional Hardware Devices: Some off-the-shelf robots consists of a base pro-
viding all functionality necessary for locomotion as well as a range of additional sensors.
Often all the sensor and actuator hardware is controlled by a single PC or microcontroller
board, which presents itself to the programmer as a single device. In these cases, it can be
hard to provide clearly separated APIs for each sensor/sensor modality or each actuator.

• Flexibility and Extendibility: When aiming for general and flexible interfaces and
trying to address as many use cases as possible, the abstraction hierarchy can get too
complex, which makes it hard to extend and maintain. Sometimes, flexibility and generality
need to be sacrifices for simplicity and improved maintainability.

• Different Sensor Configuration: Different robots may use different types and config-
urations of sensors for producing the same kind of or similar information. For instance,
both a 3D laser scanner and a stereo camera can be used to produce 3D point clouds. By
using an appropriate multi-level device abstraction hierarchy, these sensor devices could be
made exchangeable.

• Different Sensor Quality: Even if two sensors produce the same kind of information,
the quality of the information delivered (e.g. the noise level) can be very different. Both
a laser scanner and a ring of sonars can produce range information, but the information
from the laser scanner is usually much more accurate. The challenge is how to deal with
such differences on the interface level, e.g. by providing additional quality-of-service (QoS)
information.

• Coordinate Transformations: Sensors usually deliver information in terms of the coor-
dinate systems associated with the device, while the modules processing such information
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usually need to transform this into another coordinate systems, e.g. a robot-centric coor-
dinate system or a fixed world coordinate system. The coordinate transformations cannot
be defined in isolation and require knowledge about the physical structure of the overall
system, which defines the relationships between coordinate frames involved. Representa-
tion of coordinate frames should preferably be uniform in order to avoid difficult, inefficient
and error-prone transformations when subsystems share such information.

• Separation of Hardware Abstraction and Middleware: If a hardware abstraction
hierarchy is to be reused in another robotics software project, it hardware abstraction
should be separated from communication middleware issues[31].

• Distinction of Multiple Hardware Devices: A robot can have multiple instances of
the same hardware device, like two identical laser scanners, one on the front and another on
the back. Usually, these two devices should be distinguishable by their operating systems
port name (e.g. COM1 or ttyUSB1). However, the port identifier assigned by the operating
system is not always deterministic and may depend on the order the devices are plugged
in or registered when booting the systems. It is always possible to distinguish between
multiple instances of the same hardware device, if each hardware device has a unique,
vendor-assigned ID, such as serial number. However, this is not always the case, and
especially low cost devices often lack this feature.

• Device Categorization: For some hardware devices it is is not easy to categorize them
into a single device category. There are integrated hardware devices which fall in two or
more categories. For example, an integrated pan-tilt-zoom camera or a robot platform
with integrated motor controller and sonar sensors may be accessed through the same
hardware interface. The problem only occurs when a device has to be categorized into a
single category. There is no problem, if it is possible to categorize a device into multiple
categories. This could be implemented e.g. by multiple inheritance. The pan-tilt zoom
camera interface would inherit from the zoom camera interface and the pan-tilt interface.

4.3 Assessment of Hardware Abstraction Approaches

Whe now look a bit closer into the hardware abstractions of different robotics software frame-
works, focusing on laser scanners as a particular class of hardware devices. We chose the laser
scanner because almost all robotics software frameworks (except YARP) implement hardware
device abstractions for it. In the next few subsections, we consider the hardware abstractions of
the following framworks: Orca, ROS, Player, YARP, ARIA, MRPT, OPRoS and OpenRTM.

4.3.1 Orca

Hardware Abstraction Hierarchy Orca [43] uses mostly two levels in its hardware device
hierarchies, only the range finder devices feature three levels. The first level classifies hardware
devices in terms of functionality. In the case of the range finders, there is a further classification
in terms of the type of range finder, e.g. laser range finders. The last level is then the actual
hardware device driver which can either serve a group of hardware devices, such as a ring of
sonars, or a single hardware device. The UML diagram in Figure 4.6 shows a section of the
device classes hierarchy of the robotics software framework Orca.

Laser Scanner Example The interface to the laser scanners is defined by the LaserScanner2d
interface definition, which inherits from the RangeScanner2d interface. These definition are done
in the ICE slice language.
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Figure 4.6: Orca range finder hardware hierarchy

In Orca, every hardware device is encapsulated in its own component. For instance, there
is a component for a 2D laser scanner called Laser2d. This is a little bit inconsistent with the
hardware hierarchy, because the component is not a generic range finder component. This is
maybe the case because Orca does not support other range finders than laser scanners. The
Laser2d component dynamically loads an implementation of a Hydro hardware interface hy-
drointerfaces::LaserScanner2d.

When configuring a device, a driver implementation has to be chosen. The following laser
scanner implementations are available in Orca: Fake Driver, HokuyoAist, Carmen, Player or
Gearbox. Generic parameters like minimum range [m], maximum range [m], field of view [rad],
starting angle [rad] and the number of samples in a scan, are also set in the component. In
the component one can also provide a position vector describing where the scanner is physically
mounted with respect to the robot’s local coordinate system. With this vector Orca is capable
to hide the orientation of the laser scanner. Even if the scanner is mounted up-side-down, the
clients can work with the scanner as it as usual (top-side-up), as long as the position vector
has been set up correctly. The physical dimensions of the laser device can also be set in the
component. All other configurations have to be done with the individual driver, like Carmen,
Gearbox, etc. This means, that the configuration of devices is done on two different abstraction
levels: on an abstract level, the parameters generic for all laser scanners (field of view, starting
angle, number of samples in a scan), and on a lower level the parameters which have to be set
individually for the specific device (port, baudrate).

4.3.2 ROS

Hardware Hierarchy In ROS[44], there are three packages in the driver_common stack which
should be helpful for the development of a hardware device driver.
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The dynamic_reconfigure package provides an infrastructure to reconfigure node parameters
at runtime without restarting the nodes. The driver_base package contains a base class for
sensors to provide a consistent state machine and interface. The timestamp_tools package
contains classes to help timestamping hardware events.

The individual drivers use globally defined message descriptions as interfaces. Thereby, it is
possible to exchange one type of laser scanner type with another. A replacement laser scanner
just needs to implement the same messages. The hardware abstraction of ROS is very similar to
the hardware abstraction of Player (see Section 4.3.3).

Laser Scanner Example The HokuyoNode class is directly inherited from the abstract DriverNode
class. There is no generic range finder or laser scanner class. The DriverNode class provides the
helper classes NodeHandle, SelfTest, diagnostic_updater and Reconfigurator. The specific
self tests or diagnostics are added at runtime by the HokuyoNode class. Aside of these classes,
the HokuyoNode class also implements the methods: read_config(), check_reconfigure(),
start(), publishScan(), stop() and several test methods.

4.3.3 Player

Hardware Abstraction: In [45] it is stated that the main purpose of Player is the abstraction
of hardware. Player defines a set of interfaces, which can be used to interact with the hardware
devices. By using these messages, it is possible to write application programs which use the
laser interface without knowing what laser scanner the robot actually uses. Programs which
are written in such a manner are more portable to other robot platforms. There are three key
concepts in Player:

• Interface: A specification of how to interact with a certain class of robotic sensor, actuator,
or algorithm. The interface defines the syntax and semantics of all messages that can be
exchanged. The interface of Player can only define TCP messages and cannot model
something like a RPC.

• Driver: A piece of software, usually written in C++, which communicates with a robotic
sensor, actuator, or algorithm, and translates its inputs and outputs to conform to one or
more interfaces. By implementing globally defined interfaces the driver hides the specifics
of a given entity.

• Device: If a driver is bound to an interface, this is called device. All messaging in Player
occurs between devices via interfaces. The drivers, while doing most of the work, are never
accessed directly.

Laser Scanner Example: The laser interface defines a format in which for instance a planar
range sensor can return its range readings. The sicklms200 driver communicates with a SICK
LMS200 over a serial line and retrieves range data from it. The driver then translates the
retrieved data to make it conform with the data structure defined in the interface. Other drivers
support the laser interface as well, for instance the urglaser or the simulated laser device stage.
Because they all use the same interface, it makes no difference to the application program which
driver provides the range data. The drivers communicate directly by means of TCP sockets,
which entangle the driver from the communication infrastructure. However, this reduces the
portability of the Player drivers.
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Figure 4.7: YARP Hardware Abstraction Hierarchy

4.3.4 YARP

Hardware Abstraction Hierarchy: In YARP[33], all device drivers inherit from the abstract
class DeviceDriver, which itself inherits form the IConfig Class, which defines a configurable
object.

yarp::dev::DeviceDriver : public yarp::os::IConfig
{
public:

virtual ~DeviceDriver(){}
virtual bool open(yarp::os::Searchable& config){ return true; }
virtual bool close(){ return true; }

};

A subset of the abstraction hierarchy is illustrated in Figure 4.7. The hierarchy is in terms of
interfaces. Classes with a body are not used. These interfaces shield the rest of your system
from the driver specific code and make hardware replacement possible. The hierarchy provides
harmonized and standard interfaces to the devices, which makes it possible to write portable
application code not depending on specific devices.

The configuration process is separated out in YARP, in order to make it easy to control it
via external command line switches or configuration files. Normally, YARP devices are started
from the command line.

c© 2010 by BRICS Team at BRSU 54 Revision 1.0



Chapter 4. Interface Technologies 4.3. Assessment of Hardware Abstraction Approaches
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ArBumpers

ArRangeDevice

ArForbiddenRangeDevice ArIrrfDeviceArIRsArRangeDeviceThreaded ArLaserReflectorDeviceArSonarDevice

ArLaser

Figure 4.8: ARIA hardware hierarchy for range devices

4.3.5 ARIA

Hardware Hierarchy: Figure 4.8 shows the hardware hierarchy for the ARIA range devices.
The ArRangeDevice class is a base class for all sensing devices which return range information.
This class maintains two ArRangeBuffer objects: a current buffer for storing very recent readings,
and a cumulative buffer for a longer history of readings. Subclasses are used for specific sensor
implementations, like ArSick for SICK lasers and ArSonarDevice for the Pioneer sonar array. It
can also be useful to treat "virtual" objects, for example forbidden areas specified by the user in a
map, like range devices. Some of these subclasses may use a separate thread to update the range
reading buffers. By just using the ArRangeDevice class in your application code, it is possible to
exchange the hardware with all supported range devices. In theory, the application code is not
only portable across all laser range finders, but also across all range devices. In practice, most
of the application code makes implicit assumptions about the type of range device. Often, the
application code assumes a specific quality of the sensor values, which may hold true only for
some range devices. The ArSick class processes incoming data from a SICK LMS-200 laser range
finding device in a background thread, and provides it through the standard ArRangeDevice API.

4.3.6 Mobile Robot Programming Toolkit (MRPT)

CGenericSensor

C2DRangeFinderAbstract

CHokuyoURGCSickLaserUSB

CActivMediaRobotBase CGPSInterfaceCIMUXSensCPtuHokuyoCCameraSensor

Figure 4.9: MRPT hardware hierarchy
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Hardware Hierarchy: Figure 4.9 shows the hardware hierarchy of the Mobile Robot Pro-
gramming Toolkit. The CGenericSensor class is a generic interface for a wide variety of sensors.
The C2DRangeFinderAbstract is the base class for all 2D range finder. It hides all device specific
detail which are not necessary for the rest of the system. The concrete hardware driver is selected
by binding it to the C2DRangeFinderAbstract class. MRPT supports exclusion polygons, areas
where points should be marked as invalid. Those areas are useful in cases where the scanner
always detects part of the vehicle itself, and where these points should simply be ignored. Other
hardware devices like actuators do not have a common base class.

4.3.7 OPRoS

OprosApi

# parameter : Property

+ initialize(in parameter : Property) : bool

+ finalize() : bool

+ enable() : bool

+ disable() : bool

+ setParameter(in Property : parameter) : bool

+ getParameter() : Property

BumperSensor

InputOutputCamera

PositionSensor

TouchSensor

TCPIP

Bus SpeechActuator

AccelerationSensor

Device

+ getStatus() : DEVICE_STATUS

UART

UltrasonicSensor

CAN

Manipulator

Sensor

Gripper

InertialMeasurementUnit

ServoActuator

LaserScanner

Figure 4.10: OPRoS hardware hierarchy

Hardware Hierarchy: The hardware hierarchy of OPRoS [46] is depicted in Figure 4.10. In
this hierarchy, the sensor class and the camera class are side by side in the same level. We could
not find any reasons why a Camera is not a Sensor. The same holds true for Manipulator, which
is on the same level as Actuator".

4.3.8 OpenRTM

Hardware Hierarchy: The OpenRTM project[47] does not define any hardware abstraction
hierarchy. They just define interface guides for various devices and data types commonly found
in robotics. OpenRTM defines interface guides for the following device types: Actuator Array:
array of actuators, such as those found in limbs of humanoid robots, AIO: analog input/out-
put, Bumper: bump sensor array, Camera: single camera, DIO: digital input/output, GPS:
Global Positioning System device, Gripper: robotic gripper or hand, IMU: Inertial Measure-
ment Unit, Joystick: joystick, Limb: robotic limb, Multi-camera: multi-camera, PanTilt:
pan-tilt unit, Ranger: range-based sensor, such as infrared and sonar array, or laser scanner,
and RFID: RFID reading device.
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Laser Scanner Example: Some of the interface guides are used to define interfaces which
are implemented by the Gearbox library[31]. The Gearbox library contains several drivers to
hardware which are commonly used in robotics. The interfaces in the Gearbox library are not
identical to the interface guides, they do extend the guides. Table 4.1 shows the interface guide
for the range sensing device (left column) and the Sick laser scanner and Hokuyo laser scanner
interfaces (center and right columns) which have been defined by using this guide.

Interface Guide:

• Input ports:

– None

• Output ports

– ranges

– intensities

• Service ports

– GetGeometry

– Power

– EnableIntensities

– GetConfig

– SetConfig

• Configuration options

– minAngle

– maxAngle

– angularRes

– minRange

– maxRange

– rangeRes

– frequency

Sick Interface:

• Input ports:

– None

• Output ports

– ranges

– intensities

– errorState

• Service ports

– None

• Configuration options

– StartAngle

– NumSamples

– BaudRate

– MinRange

– MaxRange

– FOV

– Port

– DebugLevel

Hokuyo Interface:

• Input ports:

– None

• Output ports

– ranges

– intensities

– errorState

• Service ports

– Control

• Configuration options

– StartAngle

– EndAngle

– StartStep

– EndStep

– ClusterCount

– BaudRate

– MotorSpeed

– Power

– HighSensitivity

– PullMode

– SendIntensityData

– GetNewData

– PortOptions

Table 4.1: OpenRTM range sensing device interfaces

Table 4.2 shows a comparison of the device interfaces and abstraction hierarchies of several
major robotics software frameworks. The table provides information about the project website,
the license under which it is available, and the supported programming languages and operating
systems. The Max. Depth column contains the maximum depth of the abstraction hierarchy
for a particular framework. The number of levels refers to the number of inheritance levels
in the driver hierarchy; inheritance from generic classes or interfaces as in YARP or OPRoS
is not counted. The "only Interfaces" column indicate if classes with a body are used in the
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hierarchy or only interfaces without bodies. The "Message oriented" column indicate if the
hardware abstraction interfaces are messages in the communication infrastructure. The "Coor-
dinate Transformation" column indicate if the framework got an uniform representation of the
coordinate transformations.

4.4 Conclusions

• Orca, YARP, ARIA, MRPT and OPRoS have multilevel abstraction hierarchies. They all
classify hardware devices in a similar manner, by measured physical quantity (e.g. range).
The robotics software frameworks derive the device drivers of devices measuring the same
quantity form a generic driver class. This is reflected in the implementations by using the
same return data type.

• Only YARP uses an abstraction hierarchy based on multiple inheritance. It is possible to
classify a device in multiple categories.

• The robotics software frameworks use configuration files, command line input, or a config-
uration server to read the configuration of the devices. None of the frameworks introduces
and uses separate configuration interfaces.

• ROS and Player got a similar concept to interface the devices. Both use predefined com-
munication messages to unify the interface to a group of devices (e.g. laser range finder).
By defining the interface with the communication message, they tightly couple the commu-
nication middleware with the device driver, there is no separation between communication
and computation.

• All frameworks address the actual hardware device via the communication port name like
’COM3’ or ’ttyUSB1’. None of them is using hardware device serial numbers to identify a
device.
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Chapter 5

Simulation and Emulation Technologies

5.1 Introduction

Simulation has a long-standing tradition in robotics as a useful tool for testing ideas on a virtual
robot in a virtual setting before trying it on a real robot. However, when robots became an
affordable commodity for research groups in the late 80s and early 90s, it became difficult to
publish results that had not been obtained on real robots and in simulation only; as a conse-
quence, simulation went almost out of fashion and was mainly used in specific sub-communities
like swarm robotics and robot learning.

However, in the last decade, simulation in robotics is getting more attention again. One good
reason for this is that the computational power of computers has been increasing significantly
which makes it now possible to run computationally intensive algorithms on personal computers
instead of special purpose hardware. Another reason is the increased effort of the game industry
to create realistic virtual realities in computer games. The creation of virtual worlds requires a
huge amount of processing power for graphical rendering and physics calculations. Thereby, the
game industry developed software engines which, at least in principle, seem capable of providing
high quality physic simulation and rendering software in the robotics domain. Since the goals
of computer gaming and robotics simulations are quite similar — the creation of a realistic
virtual counterpart of a real world use case —, robotics simulation environments can reuse these
simulation and graphics engines and profit from the gain in processing power. The relationship
between computer games and scientific research is more deeply analyzed in [48].

Below, we describe some motivations and benefits of using simulation in robotics; some
descriptions also illustrate how simulators are applied in practice.

Speeding Up the Development Process: At the start of a new project or the development
of a new product, the hardware often is not available. The time required for designing
a robot, procuring off-the-shelf components, manufacturing custom-designed parts, and
assembling the overall system can be significant. Rumors have it that this process can get
so much delayed even in otherwise well-managed European research projects that projects
are at risk to miss their original objectives because software development could start only
after delivery of the hardware. Simulation can be of great help. Just as electronics design
nowadays is able to develop graphics cards and motherboards long before the actual GPUs
or CPUs become physically available, robotics needs the capability to develop software
functionality without using the actual target hardware. Thereby, the availability of suitable
simulators can speed up the development process enormously.

Producing Training Data for Offline Learning: Most learning techniques require a large
amount of training data, which often is difficult and time-consuming to obtain using phys-
ical robots. Often, an appropriate simulation environment can be used to produce such
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data much faster and in almost arbitrary quantity. Also, in simulations it is often easier
to generate such data with sufficient coverage and even distribution across the data space
than using real robots. Even if the data produced by a simulation may be different from
real-world data, especially with respect to the amount and distribution of noise, it is often
sufficient for performing a first learning phase and generate functionality, which can be
fine-tuned in a second learning phase using real-world data from a robot, however with
much, much less training cycles to be performed on the physical system[49].

Speeding Up Interactive Learning: Some learning approaches make use of experience ob-
tained from the interaction of the robot with its environment, e.g. reinforcement learning,
genetic algorithms, and other evolutionary approaches. However, most of them need a
large number of such interactions before they converge or even something useful could be
learned. For example, Zagal presents an approach[50], where the control parameters for
the four-legged robot AIBO have been learned based on simulation which took 600 learn-
ing iterations, each taking 20 sec in real time. Often, the number of iterations required
is prohibitive for applying such approaches on real robots, and simulations, which execute
virtual interactions at rates often exceeding 100 or 1000 times the interaction rate of a
physical robot, offer the only way to apply these approaches and get acceptable learning
effort.

Enabling Online Learning: When online learning approaches are used, it is sometimes very
beneficial to apply learning experience acquired online to a number of similar virtual sit-
uations using simulation. Vice versa, alternative actions than the one that was selected
and executed can be tried in simulation. Exploiting these opportunities often results in
dramatic speed-up of the learning process.

Sharing Resources: Due to the high investment necessary for sophisticated robot hardware
platforms, several researchers or developers may have to share the same hardware platform.
This makes the robot platform a potential bottleneck and often leads to resource contention,
especially when due dates or project reviews are approaching. The use of appropriate
simulators can remedy this situation.

Permitting Distributed Development: Like in many large software projects, development
of sophisticated software for service robotics is nowadays often performed by spatially
distributed groups of researchers and developers. Examples include e.g. the recently com-
pleted German project DESIRE as well as many European projects, e.g. CogX or Robo-
Cast. If the project has only a single platform available, simulation can serve here both for
sharing resources and permitting distributed development. Sometimes, several platforms
are used, but use different hardware components or different configurations. By using sim-
ulator models for each of these platforms and sharing them among the group, they can
help to ensure that all developed software runs on all platforms in the consortium.

Compensating Resource Unavailability: The period an autonomous robots can be operated
autonomously depends on its battery power and, depending on robot and battery size,
ranges usually between less than an hour and a few hours. The time period needed to
recharge the batteries often exceed the operation period by a factor of 2 to 4, during
which the robot cannot be used for experiments involving navigation. Maintenance or
calibration work that occassionally needs to be performed on the robot will further increase
its unavailability. Simulators can help a lot to compensate for the unavailability of the real
hardware platform.

Improving Safety and Security: Simulators can also help to improve safety and security.
Especially when dealing with heavy or very fast robot equipment, programming errors
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could result in dangerous or damaging behavior with severe consequences. Test-driving
such equipment first in a simulator can help to prevent such problems.

Increasing Thoroughness of Testing: Finally, simulators can be instrumental to increase
the thoroughness of testing robotic equipment and applications, because they allow to
safely assess a robot’s behavior in unusual and extreme situations, which would otherwise
be difficult to produce in real-world situations or which would incur potentially severe
damages.

However, simulation also faces some tough challenges. Creating the models of the environments
and the robots at a level of detail which allows simulation with believable physics and/or photo-
realistic graphics is a very challenging task. Running these models in simulators can easily exceed
the limits of even the most advanced computational hardware. Thus, simulation model builders
must make difficult tradeoffs between model precision and runtime performance.

Another challenging problem is how to validate and debug models. There is little knowledge
about systematic model validation in the community, as this is rarely in the curriculum of robotics
courses. Complex simulation models can also be notoriously hard to debug, if model validation
yields significant defects and aberrations.

Summarizing, there currently exists no general-purpose simulator that would qualify for all
of the above tasks. In the following sections, different types of simulation environments and their
properties will be described.

5.2 Simulators Used in Robotics

Since different research projects have different requirements with respect to the features and
capabilities of a suitable simulator, a number of different simulation environments have been
developed in robotics. Although many off them are somehow available at no or nominal cost,
many systems are not maintained or further developed any more, sometimes already for many
years. Such systems are difficult to use and adapt to up-to-date requirements concerning the
supported platform models and graphics capabilities, and have little utility for new projects.

The differences in the requirements posed by particular projects are often related to the
tradeoff to be chosen between simulator performance and model precision. Since it is not possible
by principle to simulate a robot and its environment exactly as in the real world, different
simulation approaches have evolved that focus on different problem aspects.

5.2.1 Low level Simulators

The simulators providing the highest precision with respect to physics are low-level simulators.
They are usually used to simulate single devices, like motors or circuits, come with tools for
the inspection of signals, and often do not support graphical visualizations of the robot and its
environment.

A widely used commercial and very versatile environment is Matlab/Simulink by Mathworks[51].
It allows the graphical modeling of dynamical systems using block charts and the inspection and
plotting of the generated output signals. Another low-level simulator is Spice [52], which is
designed to simulate electric circuits.

Simulation environments like Simulink and Spice play only a small role in the software devel-
opment of robots unless custom hardware is developed. It is more commonly used by hardware
manufacturers producing actuators, sensor systems, or mechatronic components.
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5.2.2 Algorithm Evaluation

Some simulators target a particular step in the robot development process, the selection of an
algorithm or computational approach for a particular robot functionality. In order to make
the right choice, we often need to compare and evaluate algorithms in specific settings. An
example would be choosing a path planning approach for a mobile manipulator, built e.g. by
combining one of several alternatives for a mobile base (differential, omnidirectional) and a
particular manipulator. For such uses of a simulation environment, it should support the analytic
evaluation of experiments by appropriate statistical tools.

GraspIt! is a simulation environment for robot grasp analysis [53]. It provides models for
a manipulator (Puma 560), a mobile base (Nomadics XR4000), and a set of different
robot hands. Different grasps can be evaluated and quality measures are given based
on those described in Murry et al. [54]. For precise simulation of robot grasps, custom
physics routines and collision detection routines were developed. The environment provides
an interface to Matlab, a string-based TCP/IP interface, and is available in Linux and
Windows versions. Custom models can be described in so-called inventor models which
are quite similar to VRML.

OpenRave [55] is a successor of the RAVE project[56]. It is designed for robot manipulator
path planning algorithm evaluation. External algorithms can interface the environment
via Python, Octave, and Matlab, even over the network. The performance of the different
algorithms can visualized in a 3D scene. In this environment, physics are only approxi-
mated, as no full-fledged physics engine is integrated. The purpose of this environment is
to provide a common environment and robot model to objectively evaluate path planning
algorithms and create statistical comparisons. The environment is not limited to manip-
ulation and also supports the use of sensors like basic cameras and laser range finders.
Furthermore, OpenRave provides an extensive list of model importers for COLLADA, a
custom XML 3DS, and VRML. OpenRave is based on a plug-in based architecture which
makes all modules in the system exchangeable.

5.2.3 Robot System Evaluation

The objective of the simulators described in this section is to evaluate complete robot systems.
The simulated robot model can be controlled with the complete robot system and control archi-
tecture. Therefore, these systems provide a rich set of different sensors like ultrasonic sensors,
infrared sensors, laser scanners, force sensors, or cameras to name only a few. Furthermore, dif-
ferent mobile robot bases and/or manipulators are often available as predefined models and can
be used or adapted to build a custom robot model. Since the simulator and the robot control
software should be interfaced in a manner that requires as little change to the robot code as
possible, integrated solutions are provided, which combine a robot software framework and a
simulation environment.

Player/Stage/Gazebo is the first environment that provided a combined approach of a robot
software framework (Player) with an integrated 2D simulator (Stage) and later a 3D sim-
ulator (Gazebo) [57]. Since the 2D simulator is quite limited with respect to simulating
sensors and manipulators, it is not further discussed here. The 3D simulator Gazebo
builds upon the standard physics simulation engine ODE and can be natively interfaced
with Player. Gazebo is now integrated into the ROS software framework and provides a
binary interface called libgazebo. OpenGL visualization is provided via an Ogre library.
Gazebo is running under Linux. New models can be created using C++ code, while the

Revision 1.0 63 c© 2010 by BRICS Team at BRSU



5.2. Simulators Used in Robotics Chapter 5. Simulation and Emulation Technologies

composition of models is done in an XML file. Gazebo is published under the GNU GPL
license model.

Microsoft Robotics Developer Studio (MRDS) provides a web service-oriented software
framework for robot development which is coupled with a graphical programming tool
and a 3D simulation environment. The simulation environment is based on the commercial
physic engine PhysX which allows hardware accelerated physic calculations. Simulations
are visualized based on Microsofts XNA engine. The environment allows for the import of
Collada models, but is commercially published.

USARSim [58] has been developed at CMU for the RoboCup Rescue competition and aims
at the simulation of Urban Search and Rescue environments and robots. It is based on
a commercial computer game engine name Unreal. The current version is ported from
Unreal Engine 2, which was based on the Karma physics engine, to Unreal Engine 3, which
uses the physics engine PhysX. USARsim requires a license of the game engine, but itself
is licensed under GPL. USARSim is different from the aforementioned systems since it
is not integrated in a robot software framework but it provides only interfaces to Player,
MOAST[59] and Gamebots. USARSim is utilized for the RoboCup Rescue Virtual Robot
Competition and IEEE Virtual Manufacturing Automation Competition.

Webots is a commercial simulation environment and a successor of the Khepera simulator[60].
It is a commercial environment based on the open source physics engine ODE and provides
a world and robot editor that can create models graphically and store them in VRML. It
has platform support for Linux, Windows and Mac OS X. Webots can be used to write
robot programs and transfer them to a real robot, like the e-puck, the Nao, or Katana
manipulators. C programs can be written to control simulated robots. There exist API’s
to C++, Matlab, Java and Python as well as the possibility to create TCP/IP interfaces.

Recent development such as Blender and Open Robot Simulator are still due for evaluation.

5.2.4 Learning Algorithms

An application area where simulation is very beneficial is learning, e.g. to obtain optimal control
parameters for a walking robot. An essential requirement for simulators used for learning is
excellent runtime performance since learning algorithms often need hundreds or thousands of
iterations of the same experiment. Therefore, the simulator must be capable to run experiments
faster than real-time. Nevertheless, these simulators often need to simulate physics so that
the learned parameters are applicable in real world. Therefore, the environment may have be
precisely simulated, e.g. when the robot has to learn how to climb stairs. The simulators
discussed here often provide 3D visualization capability, but usually the visualization can be
completely deactivated; for the learning outcome it is only important to record and archive the
parameters providing the best performance.

A problem that simulation on this level faces eminently is the so-called reality gap[61]. It
describes the problem that behaviors which are acquired in simulation may not behave exactly
the same way or even completely fail if transfered to the real world. This directly relates to the
complexity of the behavior or parameters that the robot shall learn.

UCHILSIM is a simulation environment developed for the four-legged league RoboCup compe-
tition at the University of Chile[50]. It uses the Open Dynamics Engine (ODE) as physics
engine. Models are defined in a customized Virtual Reality Modeling language (VRML)
format. Simulated robots can be controlled via an interface[62] based on the Open-R API
for the AIBO robots. A unique feature of this simulator is the ability to learn simulation
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parameters of models [63]. The objective is to reduce the problems caused by the reality
gap. By executing an experiment in the real world and in simulation simultaneously, the
difference in the resulting behavior are used by evolutionary algorithm to adapt the simu-
lation parameters. A limitation of this system is that it is very closely tied to the RoboCup
application; it provides only a single robot model for Sony AIBO robot and a soccer field
environment. Furthermore, this project received no updates since 2004.

YARS claims to be the fastest simulator for physical 3D simulation[64]. It targets the applica-
tion of evoutionary learning algorithms and is also based on the ODE physics engine. The
system can be interfaced by custom UDP clients, which exist for C++ and Java. Robot
models can be described with the Robot Simulation Markup Language (RoSimL).

5.2.5 Learning Team Behaviors

The most abstract types of simulators are used for analyzing the behavior of multirobot teams
or robot swarms. Since the precise simulation of the interaction of one or more complex robot
systems with a reasonably sophisticated environment is computationally very challenging, these
systems tend to use simplified robot and environment models. For swarm behavior, robots
are often represented just as boxes and with simplified sensor models, which can be defined
and configured without the support of sophisticated modeling tools and complex description
languages and formats.

Mason is a simulator for multiagent simulation[65] and swarm robotics. It is one of only a few
simulation environments developed in Java. To achieve high performance, an appropriate
visualization level can be chosen: 3D, 2D, or no visualization at all. The models and the
state of a simulation are completely decoupled, so that the simulation state can be stored or
visualization mode can be changed at any time. The simulator contains collision detection
routines, but no complete physics engine is integrated.

BREVE is a simulation environment for artificial life[66] and was not developed specifically for
robotics. It can also be used for multiagent simulation and offers a custom language for
agent description called Steve. The simulator offers a custom-developed physics engine and
3D visualization.

MuRoSimF is a special simulation environment for robot teams, but with flexible level of
detail[67]. The simulation algorithms can be distributed over different CPUs. It has been
developed for the RoboCup Humanoid soccer competition. The unique feature of this sim-
ulator is that it can be varied in precision of the algorithms for motion, sensing, collision
detection, and manipulation. With this approach the appropriate level of detail and the
resulting influence on simulation performance can be chosen based on the desired exper-
iments. The simulator uses a custom-developed engine. Control software can exchange
data with the simulated models via RS232 serial lines and/or TCP/IP ports.

5.3 Conclusions

The available simulators for robotics all have very specific target uses. There is no all-in-one
solution which would be usable and suitable for any simulation-related task during the robot
development process. Sometimes it may be necessary to use multiple simulation environments
for a single project or robot development, each targeted towards solving a particular problem on
hand, and requiring a particular tradeoff between model precision and performance to be chosen.
The same holds true for the techniques used to build simulators. For example, for the physics
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engine of a simulator, open source engines like ODE or Bullet are available, but also commercial
engines like PhysX, or custom-developed ones.

Another major issue is the integration of the simulation environment and the robot control
software. Integrated solutions like Player or the MRDS exist, but there are no standardized
interfaces which a simulator shall could support. Interfacing can be done via shared memory,
custom API’s, custom TCP/IP interfaces. Integration of simulators with commonly used software
frameworks like Player and ROS are getting more wide-spread.

Furthermore, there are no standards available for modeling robots and environments, or even
data exchange. Often, it is possible to store models in XML; standards developed elsewhere, like
Collada and VRML, are becoming more frequently used but are not capable to persist models
in a way that they can be exchanged between different simulation systems. The reason for that
is that these standards have not been specifically designed for robot simulations and are missing
important features like the description of sensor behaviors.

Many simulators evolve from particular research projects, and especially the RoboCup com-
munity provides many contributions in this area. A drawback of this situation is a lack of support
and continuity in the development after some time, so that many good simulators become less
and less usable or never result in a stable version.

Generally speaking, for a specific task an appropriate simulator has to be carefully chosen.
Simulation can be a great help in the robot software development process, if the right choice
of simulator is made with the right tradeoff between performance and model precision for the
specific task.
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Conclusions

The amount of software technologies relevant for robotics is almost overwhelming. This makes a
complete, unbiased assessment difficult. However, in the previous chapters we identified four ma-
jor classes of software technologies relevant for robotics: component-based software technologies,
communication middleware, interface technologies, and simulation and emulation technologies.
With the BRICS objectives in mind, these technology classes were screened and analysed. The
main objective of the survey was to analyze different approaches developed to tackle the problem
of software development for robotics from different perspectives. Functional properties, differ-
ences, and similarities were identified, and most importantly implications for the future BRICS
software development process have been derived. The outcome of this research will be used to
base and justify new design and development decisions of future BRICS software.

6.1 Component Technologies

The analysis of component technologies can be summarized as follows:

• There is an increasing trend to use component-based software engineering in robotics.
One explanation for this trend is the increasing number of collaborative robotics software
projects, where several spatially distributed research groups work together. Additionally,
from a systems developer point of view, it would be desirable to reuse readily developed
software packages and combine them without much extra effort into a new application.
This is exactly what component technology promises to deliver.

• From a programmer’s point of view, there seems to be some convergence on component
(meta-)models and the required associated tool chain support for developing component-
based applications. In particular, this is observable for component modeling primitives.
Most of the software frameworks reviewed adopt semantically very similar concepts, such
as data and service ports for interfaces, stepwise component initialization, and running and
clean-up for state machines.

• There is an increasing trend towards tool support for software management, e.g. for in-
stallation, clean-up, dependecy checking, etc. Future goals for tool chain providers should
include design, development, and deployment of components for different application con-
texts.

• The missing links in software for robotics include interoperability and reuse between differ-
ent software systems. Software can be viewed as a representation of developer’s knowledge
embedded in code. Every time someone else reimplements the same algorithm again in a
different piece of code, he or she reinvents the wheel and wastes effort on the issues which
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have already been solved in some other software framework. In order to achieve higher
efficiency and make more progress in focused areas, it is absolutely necessary to foster
interoperability and reuse among existing software systems. The same situation was ob-
served a decade ago in the operating systems domain. The introduction of interoperability
between various UNIXes and Linux flavors led to the current situation, where almost any
piece of code can be executed on any platform. This should also be one of the main goals
in robotics software community.

6.2 Communication Middleware

All major robot software frameworks make use of communication middleware technology to
achieve network and location transparency. However, there is a wide variety of robust and reli-
able communication middleware out there, all of which have been successfully applied either in
robotics or in closely related domains. Currently, it is impossible to identify a single middleware
solution which might eventually dominate the market and evolve as a de facto standard. Fur-
thermore, opting for one particular solution seems currently very risky, because such a choice
can lead to a premature technology lock-in. Within BRICS, this should be avoided. Facing this
situation, we intent to pursue the following strategy:

• All functionality concerned with communication should be as clearly delineated and en-
capsulated from other aspects as much as possible. This will help to implement alternative
solutions more quickly.

• BRICS will make an attempt to support more than one communication middleware. We
hope to learn enough from the design and implementation of all the glue code to integrate
two or more middlewares and to be able to design everything in a sufficiently generic man-
ner such that switching to and integrating yet another middleware turns into an exercise
consuming predictable time and effort.

6.3 Interface Technologies

After assessing the interfaces and hardware abstraction techniques of several robotics software
frameworks, we can infer the following design goals for the object-oriented device interface level
in the BRICS software architecture framework.

• The main objective for the BRICS OO device interface level should be to hide peculiarities
of vendor-specific device interfaces by providing well-defined, harmonized object-oriented
interfaces. These interfaces should be organized in a multi-level class abstraction hierar-
chy, which allows application programmers to develop with respect to generic, abstract
interfaces.

• As some devices cannot be easily classified within a single inheritance hierarchy, the class
abstraction hierarchy should support multiple inheritance.

• Sometimes it is not possible to uniquely distinguish hardware devices by OS port name
only. Devices should be identifiable by a unique hardware serial number.

• In order to increase portability of OO device interface classes, a design approach adopting a
separation of concerns strategy should be adopted. For example, functionalities concerning
communication with or the configuration of the device should be separated from its core
functionality.
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• A harmonized set of data structures and ontological committments, e.g. for coordinate
systems and their transformations, would further reduce complexity and increase main-
tainability.

We intent to apply these design goals to develop interface design guidelines for seamless integra-
tion of new hardware devices into BRICS.

6.4 Simulation and Emulation Technologies:

Simulation and emulation can be very useful tools in robotics software development. The use of
simulators is widespread, but the selection of the type of simulator used and the precision of the
models applied depend on the particular experiments and results the users have in mind. There
is no single simulator that would be appropriate for all possible uses within the robot software
development process. As a general requirement we can infer that

• simulators at various model precision levels are needed for environments and all animated
and non-animated objects in the environment, and

• emulators, also at various model precision levels, for a wide variety of robotics platforms.

The use of the term emulator — analogous to the use of hardware emulation in chip design
— is preferred and actively propagated by us, as we consider this an essential prerequisite for
allowing the robot control software under development to be used without any change on both
the emulator and the actual target hardware platform.

The use of simulation and emulation technology in robotics would benefit enormously from
the availability of libraries of standardized, reusable environment models and robot platform
models.
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