
A Reuse-Oriented Development Process for
Component-based Robotic Systems

D. Brugali1 L. Gherardi1 A. Luzzana1 A. Zakharov2

1 University of Bergamo, DIIMM, Italy
{brugali,luca.gherardi,andrea.luzzana}@unibg.it

2 GPS GmbH, Stuttgart, Germany
zakharov@gps-stuttgart.de

Abstract. State of the art in robot software development mostly relies
on class library reuse and only to a limited extent to component-based
design. In the BRICS project we have defined a software development
process that is based on the two most recent and promising approaches
to software reuse, i.e. Software Product Line (SPL) and Model-Driven
Engineering (MDE). The aim of this paper is to illustrate the whole
software development process that we have defined for developing flexible
and reusable component-based robotics libraries, to exemplify it with the
case study of robust navigation functionality, and to present the software
tools that we have developed for supporting the proposed process.

1 Introduction

The routine use of existing solutions in the development of new systems is a key
attribute of every mature engineering discipline. Software reuse is a state of the
practice development approach in various application domains, such as telecom-
munications, factory automation, automotive, and avionics. Software Engineer-
ing has produced several techniques and approaches for promoting the reuse of
software in the development of complex software systems. A survey can be found
in [3] (Sidebar A Historical Overview of Software Reuse).

In Robotics, software reuse is typically conceived as cut and paste of code
lines from program to program: this practice is called opportunistic software
reuse and might work only for the development of simple systems (e.g. for edu-
cational purposes) or for unique systems (e.g. a research prototype).

In contrast, the development of industrial-strength robotic systems that aim
to become commodity, require a systematic approach to software reuse. System-
atic software reuse is the routine use of existing software or software knowledge
to construct new software, so that similarities in requirements, architectures and
design between applications can be exploited to achieve substantial benefits in
productivity, quality and business performance.

If a company that commercializes integrated robotic systems wants to achieve
customer value through large commercial diversity with a minimum of technical
diversity at minimal cost, the best approach to software development is the
Software Product Line (SPL)[5].



An SPL is a set of applications (products) that share many (structural, be-
havioral, etc.) commonalities and together address a particular domain. The
term domain is used to denote or group a set of systems (e.g. mobile robots,
humanoid robots) or functional areas (motion planning, deliberative control),
within systems, that exhibit similar functionality. Each new application is built
from the SPL repository of common software assets (e.g. architectural and de-
sign models, software components). In the BRICS project we have defined a
software development process that exploits the SPL approach and accounts for
two peculiarities of the robotics field:

– Today, a huge corpus of software applications, which implement the en-
tire spectrum of robot functionality, algorithms, and control paradigms, is
available in robotic research laboratories and potentially could be reused
in many different applications. Typically, their interoperability or their ex-
tensions towards novel applications require high efforts. Any company that
aims at developing professional software for complex robotic systems has
to make an initial investment in refactoring and harmonizing existing open
source robotics libraries that implement the robot functionalities offered by
the SPL. This phase is typically called software development for reuse.

– Typically, robotic systems integrators are not software engineers and do not
master advanced software development techniques adequately. For this rea-
son, the proposed development process exploits the Model-Driven Engineer-
ing (MDE) [15] approach. According to the MDE approach, robotic sys-
tem integrators use domain-specific languages to build models that capture
the structure, behavior, and relevant properties of their software systems.
A new application is developed by reusing these models, customizing them
according to specific application requirements, and semiautomatically trans-
form models and even generate source code using transformation engines and
generators. This phase is typically called software development with reuse.

Figure 1 illustrates the phases of the reuse-oriented development process
described in this paper. The first two phases, namely software refactoring and
product line design, are intended to produce software for reuse. The remaining
two phases, namely Variability modeling and Variability resolution, support the
development of software with reuse. In the upper part of Figure 1, the conceptual
and software tools that support the process are linked to the various phases,
namely Refactoring Patterns [6], the BRICS Component Model (BCM )[9], the
BRICS Integrated Development Environment (BRIDE)[9], and the BRICS tool
for variability modeling and resolution (FODA). In the lower part of the figure
the input open source libraries and the intermediate products of the development
process are represented, namely the BRICS class libraries, the Product Line
models, the Variability models (features models), and the Application models.

This paper aims to illustrate the whole software development process that
we have defined for developing flexible and reusable component-based robotics
libraries, to exemplify it with the case study of the robust navigation, and to
present the software tools that we have developed for supporting the robotic engi-
neers in modeling and resolving variability in component-based robotics systems.



BRICS 
Component 

model

BRIDE 
Tool

Code 
Refactoring

DocumentDocumentOpen 
Source 

Libraries

DocumentDocumentBRICS 
Class 

Libraries

DocumentDocumentProduct 
Line Model

DocumentDocumentFeature 
Model

DocumentDocumentApplication 
Model

Product 
Line Design

Variability 
Modeling

Variability 
Resolution

FODA 
Tool

Refactoring 
Patterns

Fig. 1. The development process

The paper is structured as follows. Section 2 illustrates state of the art open
source libraries that provide robust navigation functionality. Sections 3 to 6
present the four phases of the development process and exemplify them with the
robust navigation case study. Finally Section 7 draws the relevant conclusions.

2 The Robust Navigation Case Study

Robust navigation is the ability of a mobile robot to perform autonomous navi-
gating, while avoiding dangerous situations such as collisions with obstacles. It
is a cross-sectional domain, which includes path planning, motion control and
sensor data processing.

From an algorithmic point of view, the challenging task is to organize an effi-
cient interaction between these functionalities in order to maximize performance,
safety, and robustness. Mobile robot navigation algorithms have been a research
topic for several decades (see [16] for a taxonomy). Existing algorithms could
be roughly classified as one- and multi-step methods. One-step methods directly
convert the sensor data to a motion commands. Majority of one-step algorithms
are either based on classical planning or on the potential fields approaches [16].
Today, they are rarely used due to their inability to cope with dynamic en-
vironment and vehicle constraints. Multi-step methods (e.g. Dynamic Window
Approach [8], Vector Field Histogram [17], Nearness Diagram [12]) overcome
these limitations by creating a local map of the environment around the robot
and performing local planning by computing possible motion directions (Near-
ness Diagram) and velocities (VHF) taking into account distance to the goal or
to a precomputed path.

From a software development point of view, the challenge is to implement
robust navigation functionality as a set of reusable components that can be
assembled into flexible systems3. For this purpose, the BRICS project applies a
novel approach to software development, which avoids to develop from scratch
robot functionalities based on yet another software architecture. Instead, by
collecting and analyzing well known open source libraries providing robotics

3 The IEEE Standard Glossary of Software Engineering Terminology defines flexibility
as the ease with which a system or component can be modified for use in applications
or environments other than those for which it was specifically designed.



functionalities, we aim at identifying those architectural aspects (i.e. entities,
data structures, interfaces, relationships) that are common to all or most of
the implementations of the same family of functionalities, and those aspects
that distinguish one implementation from another. These common architectural
aspects represent the stable characteristics of a family of functionalities and are
likely to remain stable through future implementations of the functionalities.

By analyzing existing robust navigation libraries (see table 1) we have re-
alized that typically they refer to the same functionality using different names.
In some cases, the functionality is not even mentioned but is implicit in the
implementation.

– Motion planning (aka BaseGlobalPlanner, PathPlanner): is the process of
computing a collision-free global path in a static environment between a
given start position and a given goal position. The path is typically repre-
sented as a sequence of intermediate waypoints.

– Trajectory generation (aka ParameterizedTrajectoryGenerator, DWAPlan-
ner): is the process of refining a path for introducing velocity information.
A trajectory defines the planned positions of the robot over the time and is
typically represented as a sequence of positions with an associated velocity.

– Obstacle detection and representation (aka CostMap2D, OgMap): is the pro-
cess of using sensors information (e.g. laser scans) in order to detect the
positions of the obstacles around the robot. This information is then used
for creating and updating a map of the environment.

– Obstacle avoidance (aka Local LocalBaseNavigation, LocalNav, CAbstrac-
tHolonomicReactiveMethod): is the process of adapting the precomputed
trajectory while the robot is moving in order to avoid unexpected obstacles
that occlude the path.

– Position and velocity control (aka LocalBaseNavigation, LocalNav, Motion-
Controller): is the process of generating velocity commands to the robot in
order to move it along the computed trajectory. This functionality has a
strong dependency with the kinematics model, which is often implicit in the
library implementations.

– Localization (aka FaithLocaliser, amcl): is the process of estimating the robot
position with respect to a global reference frame. In the simplest case this
functionality is implemented by using only the robot odometry but other
sensors can be used to improve the odometric estimation.

3 Software Refactoring

Software refactoring is the process of changing a software system in such a way
that it does not alter the external behaviour of the code yet improves its internal
structure [7]. It occurs at two complementary levels: (a) Syntactical refactoring
is a behavior preserving transformation that, through the adoption of good de-
sign principles (abstraction, information hiding, polymorphism, etc.) aims at
making software artifacts modular, reusable, open. (b) Semantic refactoring is a



Type Method Library Name

Global Planners

Carrot planner, Dijkstra’s alg. ROS

ARA*, Anytime D*, ANA* SBPL/ROS

Sampling-based Planning OOMPL, BRICS MM

Trajectory Generation reactivenav::CPTG1 - CPTG7 MRPT

Local planners

VFF MRPT

VFH+ Player/Stage, ORCA

Dynamic Window ROS, Sunflower

Trajectory Rollout ROS

Nearness Diagram MRPT

Elastic Band ROS

Mapping
gmapping, costmap 2d ROS

ogNode, ogMap ORCA

Localization
amcl ROS

ICP SLAM, RBPF SLAM, ... MRPT

Table 1. Open source libraries for robust navigation

domain-driven transformation that, through a careful analysis of the application
domain (commonality/variability and stability analysis), enhances software ar-
tifacts flexibility, adaptability, and portability. Software refactoring brings many
advantages not immediately but in a long time. The initial cost in terms of
time and effort spent for rewriting the code is balanced by the time gained
in future. This gain is due to a code more readable, more reusable and more
maintainable. The result of a refactoring process is a library of classes that are
middleware-independent, are organized in a hierarchy of abstraction levels, pro-
vide harmonized interfaces (API), and implement a variety of algorithms.

In a previous paper [2] we have described how architecture refactoring pat-
terns have been applied to refactor motion planning software libraries. Refac-
toring patterns provide guidelines to redistribute the responsibilities among the
classes of a software library, to harmonize the common data structures and to
reduce the coupling degree.

3.1 Case study: the ROS Navigation Stack

This section presents the architecture of an open-source library, which provides
a mobile-based navigation functionality. We selected ROS framework because
of its popularity in robotic community. Figure 2 shows a portion of the class
diagram that represents the architecture of the ROS navigation stack.

Class BaseGlobalPlanner is an interface of the global planners used in naviga-
tion stack. There are two implementations: CarrotPlanner and NavfnROS. First
one is a simplistic planner, which connects a target pose and robot actual pose
with a straight line and performs collision checks along this line. The second is
a grid-based A* path-planner for circular robots.

Multiple functionalities are tightly coupled in the implementation of class
BaseLocalPlanner, i.e. trajectory generation, adaptation and execution. It gen-
erates a number of trajectories for admissible linear and angular velocities of
the robot. Each trajectory is scored according to an objective function, which



MoveBaseTransformListener Costmap2D

BaseGlobalPlannerBaseLocalPlanner

CarrotPlanner NavfnROSDWAPlannerROSTrajectoryPlannerROS

TwistPose PointCloud/LaserScan MapOdometry

Fig. 2. Mobile base navigation component in ROS

includes goal heading, path heading and obstacle clearance. The trajectory with
maximum objective function is selected and its associated linear and angular
velocity (twist) are sent to the robot driver. Two concrete implementations of
this class are available, namely TrajectoryPlannerROS and DWAPlannerROS.
Both assume implicitly that the robot has a differential drive kinematics model.

Class CostMap2D is an implementation of 2D occupancy grid-map. It em-
beds the data structures for representing a 2D tessellated representation of the
environment. It is used for both path planning and obstacle avoidance.

The top-level class is the MoveBase class, which instantiates all the classes
that implement specific functionality and starts several threads for their con-
current execution. Concurrent access to shared resources (e.g. the map of the
environment) is synchronized by means of infrastructure mechanisms, such as
a state machine, mutexes and numerous flags and conditions across the code.
There is thus no guarantee that these functionalities are executed in real-time.

The MoveBase class is instantiated by a main function that starts a ROS
node. Thus, all the functionalities for robust navigation are provided by a single
component (ROS node). This component interacts with other components in
the system (e.g. the robot base driver and the laser driver) by exchanging ROS
messages. The set of exchanged messages represent the component interface.
Unfortunately, the component interface is not clearly separated by the compo-
nent implementation since ROS messages are produced and consumed by several
classes that implement the component. Thus, the only way to understand how
components interact with each others is to carefully look at the source code.

The ROS Navigation stack classes implementations are tightly coupled with
the ROS infrastructure, thus they cannot be reused in different environments.

4 Product Line Design

In [4] we have defined a set of architectural principles for the development of flex-
ible component-based systems that foster the separation of four design concerns
originally identified in [13], namely Computation, Coordination, Communication,
and Configuration.

According to these architectural principles, the robot functionalities are pro-
vided by Computation components that have harmonized interfaces and imple-
ment specific robotic algorithms. The clear separation between component inter-



face and implementation guarantees interoperability of components that provide
similar functionalities but implement different algorithms.

The mutual interactions of Computation components might change dynami-
cally according to their current internal state. In order to improve their reusabil-
ity, interaction policy should be implemented as finite state machines in special-
ized Coordination components that observe state transitions in the systems by
listening to events notified by Computation components.

Typically, components rely on a middleware infrastructure to exchange data
and events through the network. In order to make components implementations
independent from any specific middleware, components should be designed and
implemented according to an abstract component model (meta-model), which
defines middleware-independent communication ports. For this purpose, simi-
larly to the OMG initiative4, the BRICS project has defined a new component
model (BCM [9]), which provides the following architectural elements:

– Component: is a software package that encapsulates a set of related func-
tionalities and has its own thread of control.

– Port: represents the component interface. It explicitly defines (in terms of
data types and contract) how a component provides (output port) or requires
(input port) a service or a data-flow.

– Property: allows the component configuration. A property provides an in-
terface for setting the value of a parameter defined in the component imple-
mentation (e.g. period, algorithm parameters, . . . ).

– Connector: defines the connection between an input port and an output port
and its communication mechanism.

Computation components and Coordination components can be assembled to
build applications. A family of similar applications that are built reusing a set of
software components and share the same architecture is called a Software Prod-
uct Line. The product line architecture specifies the structural (data structures
and application programming interfaces) and behavioral (data and control flow)
commonalities among the products and the variations reflected in each prod-
uct (variation points). It prescribes how software components (variants) can be
assembled to derive individual products. For example, a variation point in the
robust navigation product line is the algorithm for obstacle avoidance. Differ-
ent algorithms (i.e. dynamic window approach [8] or vector field histogram [17])
are implemented as distinct software components. The product line architecture
guarantees that these components are interchangeable.

The possible configurations of a software product line are represented in a
product line model, which specifies (a) a set of components that can be used for
building all the possible applications of the family (some of them are mandatory,
some others are instead optional) and (b) a set of connections among components
(some of them are stable, some others are variable). By selecting the optional
components, their specific implementation, the values of their configuration pa-
rameters, and the variable connections, the variability of the product line is
resolved and a specific application model is defined.

4 http://www.omg.org/spec/RTC/1.0/



Laser Scanner Driver
laserScannerId

Trajectory Follower
robotModel

RGB Camera DriverRobot Driver
robotModel

Coordinator
Trajectory Planner

Trajectory Adapter

laserScannerId
robotModel

Marker Locator
cameraId

Pose Tracker

Odometry

Twist

Trajectory

Laser Scan

Pose RW

Image

Robot Pose & Twist

Trajectory

Marker Id

Event

Event

Goal

Marker
Pose

Event

Event

Fig. 3. The model representing the BRICS Robust Navigation Product Line

4.1 The BRICS Robust Navigation SPL

Figure 3 represents a first draft of the BRICS Robust Navigation Product Line.
Continuous lines depict the default connections between input and output ports
while dashed lines represent the optional connections that may be created to con-
figure a specific application. Continuous boxes represent mandatory components,
while dashed boxes represent optional components. Boxes inside components in-
dicate their properties. More specifically:

– Trajectory Planner implements the motion planning and trajectory gen-
eration functionalities. It gets a goal position and the current robot position
as input and produces a trajectory that is a vector of poses with twist.

– Trajectory Adapter interpolates the precomputed trajectory and pro-
duces an obstacle-free trajectory toward the next waypoint taking into ac-
count the sensor information produced by the laser scanner.

– Trajectory Follower receives the adapted trajectory and the robot esti-
mated pose and produces as output a twist for following the input trajectory.

– Robot Driver drives the physical robot. It receives twist commands and
produces the robot odometry.

– Laser Scanner Driver reads the raw data from the device and produces
as output the laser scans expressed as a vector of distances and angles.

– Pose Tracker keeps track of the current pose and twist of the robot. It fuses
odometry estimates with position estimates computed by other components.

– Marker Locator is an optional component, which is in charge of localizing
visual markers placed in the environment and computing their positions with
respect to a global reference frame. It receives as input an image and the
odometry of the robot and produces as output the absolute marker position.

– RGB Camera Driver is an optional component, which reads data from
the RGB camera and produces as output an RGB image.

– Coordinator implements the coordination logic among components. It mon-
itors events generated by components that could represent abnormal situa-
tions (e.g. the Trajectory Adapter cannot generate a trajectory to avoid an



obstacle) and generates events that triggers state changes in other compo-
nents (e.g. the Trajectory Planner should plan a new trajectory).

There are some important differences between the proposed solution and the
ROS navigation stack discussed in Section 3. First of all the navigation func-
tionalities are mapped to finer grained components. Each component has only
one thread of control. This allows to replace individual functionalities easier and
to select the most appropriate frequency for each functionality. Accordingly, the
trajectory follower and the trajectory adapter functionalities are implemented
in two different components. This separation reflects the different operating fre-
quencies of the two components: the Trajectory Follower runs at a higher fre-
quency, as required by the closed loop position and velocity control algorithm.
On the contrary the Trajectory Adapter component computes a new output only
when receives a new laser scan or a new trajectory.

Unlike in ROS, the coordination mechanisms have been made independent
from the components implementations by introducing a Coordinator component.

5 Variability Modeling

Building software systems according to the product line approach is economic
and efficient [5]. Most work is about integration, customization, and configura-
tion instead of creation. A system configuration is an arrangement of components
and associated options and settings that completely implements a software prod-
uct. Variants may exclude each others (e.g., the selection of a component imple-
menting an indoor navigation algorithm excludes the choice of components pro-
viding GPS-based localization services) or one option may make the integration
of a second one a necessity (e.g., a component implementing a visual odometry
algorithm depends on a component that supplies images of the environment).
Hence, only a subset of all combinations is the admissible configuration.

In order to model and symbolically represent the product line variation
points, their variants and the constraints between them, a formalism called Fea-
ture Models was introduced in 1990 in the context of the Feature Oriented Do-
main Analysis (FODA) approach [11]. These models make explicit the variability
that is implicitly defined during the product line design.

A feature model is a hierarchical composition of features. A feature defines
a software property and represents an increment in program functionality. Com-
posing features, i.e. selecting a subset of all the features contained in a feature
model, corresponds to select a specific product (application) that belongs to the
product line described by the model. This selection is usually called instance.

Feature models are organized as a tree and the root feature, also called con-
cept, defines the application family. Parent features are connected to children
features by means of edges, which represent containment relationships. Features
can be discerned in two main categories: mandatory and optional. Mandatory
features have to be present in all the application of the product line (common-
alities). They are graphically depicted by means of a black circle on the top.



Optional features instead can be present but they are not mandatory (variation
points). They are depicted by means of a white circle on the top.

Three types of containment relationships define containment constraints be-
tween the parent and the children features: one-to-one, or and alternative.
The one-to-one containment means that the parent feature can (or has to) con-
tain the child feature. The other two kinds of containments are containments
between the parent feature and its children features. Here the parent feature
is the variation point, while the subfeatures the variants. The or containment
means that from the children features at least one has to be present in the
application. The alternative containment (X-Or) instead means that from the
children features only one can be present in the application.

Feature models also define two kinds of constraints between the features:
requires and excludes. These constraints allow the definition of a subset of
valid configurations. The requires constraint means that if a feature A is selected,
then also a feature B has to be selected. The excludes constraint instead means
that if a feature A is selected, then a feature B cannot be selected.

[10] presents an Eclipse plugin that allows the design of feature models. This
plugin provides a formal meta-model (Ecore based), which defines the rules for
creating feature models conform to the standard specification introduced above.

5.1 Variability in the BRICS Robust Navigation SPL

Figure 4 depicts the feature model describing the variability of the BRICS Ro-
bust Navigation Product Line. Gray boxes represent the or and alternative
containments relationship and show the cardinality (1. . . n represents or and
1. . . 1 represents alternative). It contains four main variation points:

– Localization: this variation point regards the information used for localizing
the robot. Using the odometry is mandatory but a marker locator can be
used in order to improve the pose estimation.

– Navigation: this variation point regards the navigation strategy. Two vari-
ants are available: map-based and marker-based. In the first case a Trajectory
Planner computes a collision-free path according to the goal received as in-
put from its client. In the second case instead the goal is provided by the
Marker Locator and represents the position of a specific marker.

– Obstacle Avoidance: this variation point regards the algorithm used for
avoiding obstacles. Two variants are available: Dynamic Windows Approach
and Vector Field Histogram.

– Sensors: this variation point regards the sensors used in the application.
Using the laser scanner is mandatory for obstacle avoidance. However, in
order to recognize visual markers, the robot equipment can be extended by
using a front camera and a camera held on a specific support.

The feature model also defines the following three constraints that limit the
allowable combinations of features. (a) The use of the marker-based navigation
strategies requires at least one of the two cameras. (b) The same requirements



Fig. 4. The model representing the variability in the BRICS RN Product Line. It was
designed with our Feature Model plugin

are valid when we want to use the markers for localization. (c) The selection of
a marked based navigation excludes the use of the markers for the localization.

6 Variability Resolution

The last phase of development process regards the resolution of the variability
in the Product Line model and has the goal of producing the model of a spe-
cific application. Thanks to our tool this can be done by selecting the set of
variants (features), which reflect the application requirements, directly on the
feature model. This selection should satisfy the explicit constraints, the contain-
ments cardinalities and the selection of the mandatory features defined in the
feature model. The tool automatically checks the constraints satisfaction and
only successively generates the application model, which can be transformed
in the deployment file of a specific middleware by means of the model-to-text
transformation provided by BRIDE.

In order to define how the Product Line model has to be modified for produc-
ing the model of a specific application, we introduced the concept of transforma-
tion. A transformation is an action that modifies the architectural elements of a
Product Line model in order to replace a variation point with a specific variant.
Different kinds of transformations are available, according to the elements that
have to be modified (components implementations, connections, properties). The
developer can associate to each feature one or more transformations. A selection
of a set of features will hence result in the execution of a set of transformations.

Figure 5 illustrates how the meta-model of the feature models described in
[10] has been extended for representing the transformation associated to the
features. Currently it has been done only for the generation of Orocos RTT
application. For this reason the meta-model has three links to three elements
defined in the RTT-BCM meta-model: Task Context, Connection Policy, and
Property [1]. However the approach can be easily extended to other middle-
wares such ROS and SCA [14]. The following list describes the different kinds
of transformations.

– TransfImplementation : defines which implementation will be used for a
certain component, i.e. which algorithm (Computation and Coordination).
The developer specifies a link to the desired component (defined in the Prod-



Fig. 5. The extension of the feature model meta-model that specifies how transforma-
tions are mapped to RTT elements (classes with the arrow on the top right corner)

uct Line model) and the class that implements its interface (by means of the
namespace and the class name).

– TransfConnection : defines how the components will be connected (Com-
position). The developer specifies a link to a connection that has to be re-
moved from the Product Line model (if needed) and a set of connections
that have to be created (with specific lock policies and the buffer sizes). As
a result of these transformations unconnected components will be removed
from the model.

– TransfProperty : defines the value of a certain property (Configuration).
The developer specifies a link to the desired property (defined in the Product
Line model) and the value he wants to assign to it.

6.1 Variability resolution in the BRICS Robust Navigation SPL

The product line presented in the previous sections allows the deployment of
different applications that can be classified according to two navigation strate-
gies: map-based and marker-based. The different strategies can be derived by
resolving the Navigation variation point.

If a map-based navigation is chosen, then the Marker Locator, the RGB
Camera Driver components and all the connections between these components
and the others are not necessary. So these components can be removed from
the model. In case of marker-based navigation instead, the Trajectory Planner
component receives the goal from the Marker Locator. Hence the optional con-
nections of Marker Locator and RGB Camera Driver have to be created.

In addition to these connections, the Coordinator implementation and its
connections have to be defined according to the navigation strategy. The Co-
ordinator always recovers from situation in which the Trajectory Adapter is
unable to adapt the trajectory. This can happen due to the presence of obstacles
all around the front part of the robot. In these cases, the Coordinator receives



an event from the Trajectory Adapter and returns an event to the Trajectory
Planner asking it to recompute a path. When a marker-based strategy is chosen
instead, the Coordinator resolves also situations in which no markers can be de-
tected. In these cases the Coordinator receives an event from the Marker Locator
an returns an event to the Trajectory Planner asking it to create a trajectory for
moving the robot in such a way to seek new markers. This configuration needs
a connection between the Event interfaces of Marker Locator and Coordinator.

From this point several applications belonging to the two groups can be
derived by resolving the other variation points. The Localization based on marker
can be deployed by connecting the Pose RW interface of the Marker Locator to
the Pose Tracker. The obstacle avoidance variation point can be resolved by
setting the implementation of the Trajectory Adapter in order to use one of
the two algorithms (DWA or VHF). Finally the Sensors variation point can be
resolved by setting the implementation of the sensors drivers and configuring the
property of the MarkerLocator in order to specify the camera Id. This value is
needed in order to retrieve the camera position from the robot kinematic model.

The feature model depicted in figure 4 defines for each feature the transfor-
mations that allow the resolution of the variation points. Some examples of the
transformations associated to the features are reported below.

– Feature Marker-based. (a) Connection transformation. New connections be-
tween: Goal interface of Trajectory Planner and Marker Pose interface of
Marker Locator, Event interfaces of Coordinator and Marker Locator, Event
interfaces of Trajectory Adapter and Coordinator. (b) Implementation trans-
formation: set the implementation of the coordinator for resolving situations
in which no markers are visible.

– Feature DWA. In this case a single Implementation transformation is defined,
which sets the implementation of the Trajectory Generator for using the
Dynamic Window Approach.

– Feature Front Camera. (a) Property transformation: set the value of the
cameraId property of the marker locator to the Id of the front camera. (b)
Implementation transformation: set the implementation of the RGB Camera
Driver for using the driver of the appropriated camera.

7 Conclusions

In this paper we have presented the BRICS software development process for
robotic component-based systems that builds on the concept of software flexi-
bility. The key to achieving software flexibility is the possibility to identify the
class of changes that are likely to occur in the environment over the lifespan of
robotic software components and that affect components and systems portabil-
ity, interoperability, and reusability.

The BRICS approach to robotic software development consists in refactoring
existing open source robotic libraries according to flexible architectures, which
clearly separate stable and variables characteristics.



By explicitly modeling software variability, it is possible to build new appli-
cations by selecting and integrating components that provide concrete imple-
mentations (variants) of robotic functionalities (variation points).

8 ACKNOWLEDGMENTS

The research leading to these results has received funding from the European
Community’s Seventh Framework Programme (FP7/2007-2013) under grant agree-
ment no. FP7-ICT-231940-BRICS (Best Practice in Robotics). The authors
would like to thank all the partners of the project for their valuable comments.

References

1. The RTT meta model. http://www.best-of-robotics.org/bride/rtt.html.
2. D. Brugali, W. Nowak, L. Gherardi, A. Zakharov, and E. Prassler. Component-

based refactoring of motion planning libraries. In IEEE/RSJ Int. Conference on
Intelligent Robots and Systems (IROS), pages 4042–4049, 2010.

3. D. Brugali and P. Scandurra. Component-based robotic engineering (part
i)[tutorial]. Robotics & Automation Magazine, IEEE, 16(4):84–96, 2009.

4. D. Brugali and A. Shakhimardanov. Component-based robotic engineering (part
ii)[tutorial]. Robotics & Automation Magazine, IEEE, 17(1):100–112, 2010.

5. P. Clements and L. Northrop. Software Product Lines: Practices and Patterns.
Addison-Wesley, 2002.

6. S. Demeyer, S. Ducasse, and O. Nierstrasz. Object-oriented reengineering patterns.
Morgan Kaufmann, 2008.

7. M. Fowler and K. Beck. Refactoring: improving the design of existing code.
Addison-Wesley Professional, 1999.

8. D. Fox, W. Burgard, and S. Thrun. The dynamic window approach to collision
avoidance. Robotics & Automation Magazine, IEEE, 4(1):23–33, 1997.

9. H. Garcia and H. Bruyninckx. Tool chain (bride) delivered as brics software dis-
tribution. BRICS Deliverable 4.4, 2011.

10. L. Gherardi and D. Brugali. An eclipse-based feature models toolchain. In 6th
Italian Workshop on Eclipse Technologies (EclipseIT 2011), 2011.

11. K. Kang. Feature-oriented domain analysis (FODA) feasibility study. Technical
report, DTIC Document, 1990.

12. J. Minguez and L. Montano. Nearness diagram (nd) navigation: collision avoidance
in troublesome scenarios. IEEE Transactions on Robotics and Automation, 2004.

13. M. Radestock and S. Eisenbach. Coordination in evolving systems. In Proceedings
of the Int, Workshop on Trends in Distributed Systems CORBA and Beyond, pages
162–176. Springer LNCS vol. 1161, 1996.

14. Service Component Architecture (SCA). http://www.osoa.org.
15. D. Schmidt. Guest editor’s introduction: Model-driven engineering. Computer,

39(2):25–31, 2006.
16. B. Siciliano and O. Khatib. Springer handbook of robotics. Springer-Verlag New

York Inc, 2008.
17. I. Ulrich and J. Borenstein. Vfh+: Reliable obstacle avoidance for fast mobile

robots. In IEEE Int. Conference on Robotics and Automation, 1998.


