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Executive Summary

Because robotic systems get more complex all the time, developers around the world have,
during the last decade, created component-based software frameworks (Orocos, OpenRTM,
ROS, OPRoS, SmartSoft) to support the development and reuse of “large grained” pieces of
robotics software. This document describes the results of the project’s Component Model Task
Force, which created (under the driving force of the Harmonization Work Package 8) the BRICS
Component Model (BCM) as the major paradigm to harmonize the efforts, designs and code of
all developers contributing to robotic system software.

The BCM’s harmonizing potential lies in it providing as much structure as possible during the
development of, both, individual components and systems of components, irrespectively of
which of the above-mentioned code frameworks are used (possibly more than one at the same
time and in the same system!), and without introducing any framework- or application-specific
details.

The BCM is built upon two complementary paradigms: the “5Cs” (separation of concerns
between the development aspects of Computation, Communication, Coordination, Configu-
ration and Composition) and the “metamodelling” approach from Model-Driven Engineer-
ing. These paradigms help developers who are producing code libraries in the (at least, in the
robotics domain) traditional way (that is, with design and implementation done at the level of
a concrete programming language), but the paradigms were also designed to form the core of a
model-driven toolchain that can support developers at a higher level of abstraction, platform-
independence, and, hence, reusability than what is common in robotics.

In addition, the BCM has proven to be also able to bring more structure in the development
process itself, by identifying which aspects of the Component Model needs to be taken care of
in the major phases of that development process: functional design, component design, system
design, deployment, and runtime coordination. (In this way, the BCM forms also the core of the
Wikibook that is provided as a Deliverable in the toolchain Work Package 4.)

Somewhat unexpectedly compared to what the writers of the project’s Description of Work had
foreseen some four years ago, the concept of concrete sets of Application Programming Inter-
faces (APIs) has lost the central role and importance it has in “traditional” programming, and
that central role is now taken over by the semantically much richer concept of a Component
Model (in which APIs are just one of the relevant system design instruments).

The BCM Task Force was active while having in mind as the ideal audience the senior robot
software system engineer, with several years of experience in one or more of the mentioned
robotic software frameworks, and with an interest in using models of components and systems
to generate code instead of hand-crafting it.

The impact of the BRICS Component Model turns out to be much broader than the initially
anticipated impact of the Harmonization WP, in the sense that it structures the whole devel-
opment process with only a relative small set of semantic primitives. On the other hand, the
non-foreseen application of the metamodelling paradigm resulted in a more abstract form of
impact, which is definitely less intuitive to appreciate for junior developers. The harmoniza-
tion impact has already been realised within the BRICS project (by influencing the way code is
developed and refactored in the other Work Packages in the project), but also already outside of
the project, via dissemination workshops both with targeted developers teams and on public
fora, e.g., the European Robotics Forum), and more in particular in the Rosetta project (where
the same metamodelling paradigm has been adopted to harmonize the knowledge representa-
tion aspects of complex task specifications for robot systems).
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1 Introduction

Because robotic systems get more complex all the time, requiring the integration of motion
controller(s) on many motion degrees of freedom, multiple sensors distributed over the robot’s
body and embedded in its environment, planners and reasoners for ever more complex tasks,
etc., developers around the world have, during the last decade, created component-based soft-
ware frameworks [3, 28] (such as Orocos [5, 4], OpenRTM [19], ROS [30], OPRoS [16], Genom
[11, 17, 12], SmartSoft [26, 25], Proteus [14]) to support the development and reuse of “large
grained” pieces of robotics software. Component-based development complements the more
traditional object-oriented programming in roughly the following ways: it focuses on runtime
composition of software (and not compile time linking), it allows multiple programming lan-
guages, operating systems and communication middleware to be used in the same system,
and it adds events and data streams as first-class interaction primitives in addition to method
call APIs.

1.1 The BRICS Component Model

This document describes the BRICS Component Model (BCM) to provide developers with as
much structure in their development process as is possible without going into any application-
specific details. This BCM structure is, on the one hand, rich enough to make a real difference
(as has been proven in the last two years by disseminating it to hundreds of robotics PhD stu-
dents and engineers), and, on the other hand, generic enough to be applicable in all of the
above-mentioned robotics frameworks.

The BCM is a design paradigm, in that it introduces a methodology without being able to prove
that that methodology is “better” than other approaches. But the last Chapter of this docu-
ment presents a number of best practices for robot system design that are based on the BCM
paradigm, and with which we have helped developers find better solutions to real problems in
their complex robotics applications.

In general, a paradigm is the set of all models, thought patterns, techniques, practices, be-
liefs, mathematical representations, systematic procedures, terminology, notations, symbols,
implicit assumptions and contexts, values, performance criteria,. . . , shared by a community
of scientists, engineers and users in their modelling and analysis of the world, and their de-
sign and application of systems. So, a paradigm is a subjective, collective, cognitive but often
unconscious view shared by a group of humans, about how the world works.

Examples of such scientific paradigms are: the theories of Newtonian and Einsteinian dynam-
ics, the astronomical theory of Copernicus, Darwin’s evolution theory, meteorological and cli-
matological theories, quantum mechanics, etc. Some of those are universally accepted, others
are less so. And all of them have, to a certain extent, a subjective basis. But all of them are also
scientific paradigms in the sense that all interpretations and conclusions based on experimen-
tal data, and made on top of the paradigm’s subjective basis, are derived in a systematically
documented, refutable, and reproducable way. This is the reason why the BCM creators put
much emphasis on the complementary roles of (i) advocating the importance of introducing
formal models into the robotics development process (instead of the mostly code-only frame-
works that are now popular), and (ii) well-documented “best practices” that solve particular use
cases. The medium-term ambition of the BCM developments is that, both together, will suffice
to allow developers to first model their components and systems (hopefully starting from a rich
model repository with “best practice” sub-systems and components), and then generate code
from those models, using the best available implementations in available software frameworks.

BRICS Deliverable D8.2 1



1.2. RELATED WORK

The good news of having paradigms is their harmonization impact: practitioners within the
same paradigm need very few words to communicate or discuss their ideas and findings, be-
cause they share the paradigm’s large amount of “background” knowledge and terminology.
The bad news is that practitioners from different paradigms often find it difficult to understand
each other’s reasoning and to appreciate each other’s procedures and results. And to realise
that their difficulties are caused in the first place by their thinking inside different paradigms.

Hence, this document should be read with a mindset that already accepts the paradigm of
model-driven engineering “metamodelling” as meriting its legitimate place in robotics. This is
not at all obvious in the state of the practice of most current robotic software developments,
since the community is currently still exploring what is the best way to realize large-scale
robotics software systems. This document’s ambition is to explain in what ways the BRICS
Component Model contributes to this exploration.

1.2 Related Work

At the time that the robotics community became aware that it makes sense to spend time devel-
oping reusable software frameworks,1 the CORBA Component Model (CCM) was a large source
of inspiration. However, the advantages of its component model rather quickly lost the battle
against the huge learning curve and massiveness of the CORBA standard: it was considered to
be way too heavy and all-encompassing for the needs of the robotics community. So, the CCM
did not survive too well in mainstream robotics, except for the (at least in the Western world)
less popular OpenRTM, OPRoS, and SmartSoft, and, to a smaller extent, Orocos which has had
industrial users since its inception. Nevertheless, the most recent “Lightweight” version of the
standard [23] has a focus on realtime and embedded systems, and would fit a lot better to the
current robotics needs and mindset in the community. However, the ROS framework has in
the meantime attracted most of the community’s attention, via its low entry threshold (in com-
bination with a tireless and very active support from Willow Garage). But of all the robotics
software frameworks mentioned in this document, it is farthest away from the CCM. The BCM
introduced in this document shares (only) its structural model with that of the CCM (compo-
nents, interacting via methods, data streams and/or events, and composed by ports together).
But the BCM adds to the CCM four complementary types of components, with clear semantic
meaning in the context of robotics, so that it can guide developers in separating the functional-
ity of their applications in reusable parts, that can be composed in larger systems within various
concrete application contexts.

Robotics software development shares its context and goals with many other engineering do-
mains that require lots of online data processing. For example, some large application domains
outside of robotics also have seen the need for component-based software frameworks [8]: au-
tomotive (with AUTOSAR [6] as primary “component model” standard, and AADL [27] as pio-
neer modelling language for “computational resources”), aerospace (driving UML-based evo-
lutions such as MARTE [21]), embedded systems [18, 15], and service component architectures
in web-based systems [20]. However, none of these component models has seen the explicit
need to introduce (all of) the BCM’s “5Cs” (Chap. 2.2) as its formal set of component types, but
only go as far as identifying and supporting three or four of them. (Running ahead a bit on the
material introduced in Chap. 2.2, the missing component types are most often Configuration
and Coordination.)

Of the most popular robotics software frameworks in the “Western” robotics community, ROS
nor Orocos have an explicit and formal component model, in contrast to OpenRTM (“Japan”)
and OPRoS (“Korea”), which both use Eclipse [10] as a programming tool (but only to a limited

1This was around 2000, with GenoM [11], Player-Stage [13], Miro [29], Orocos [5] and SmartSoft [26] as pioneers.
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1.3. THE METAMODELLING PARADIGM FROM MODEL DRIVEN ENGINEERING

extend as a model-driven engineering tool). However, also the component model in OpenRTM
and OPRoS is less semantically rich and explicit than the BCM’s “5Cs”.

1.3 The metamodelling paradigm from Model Driven Engineering

As major short-term ambition, the BCM wants to introduce into the robotics community the
mindset that it is worthwhile to provide fully formal models for all of a systems’ constituents
(that is, the “5Cs”), as well as an explicit model-driven engineering development process, with
support of models and development workflows in large-scale toolchain ecosystems such as
Eclipse. The motivation for this approach is the success that model-driven engineering [1, 2]
has seen in domains where industry (and not academics) is driving the large-scale software de-
velopment: the paradigmatic belief is that complex systems can only be developed in a main-
tainable and deterministic way if they are first modelled, analysed and verified abstractly, and
only then code in programming languages is generated. The robotics domain is not that far
yet, mostly because of the attitude of software developers that they can produce code faster
and better in their favourite programming language than via the “detour” of formal models.
This observation is, in practice and in the short term, very often a valid one, because model-
driven engineering requires a lot more toolchain support than a good programming language
compiler.2 But as soon as the critical developments of (i) model definitions, (ii) model-to-text
code generation, and (iii) MDE toolchain support for all phases of the development process
(including the currently poorly supported phases of deployment and runtime coordination!),
will be realised, the overall development process is expected to speed up with an order of mag-
nitude.

Figure 1.1 gives an overview of the paradigm of metamodelling, which has its origin in the Model
Driven Engineering (MDE) domain of software engineering, aiming primarily at improving the
process of generating code from abstract models that describe a domain. The MDE terminology
for going from a higher to a lower level of specificity or detail in the knowledge of a domain is:
from platform-independent to platform-specific, by adding the platform knowledge.

The Object Management Group [22] is the main driver of standardization in this context of
Model Driven Engineering, for which it uses the trademarked name Model Driven Architecture.
A huge software effort is being realized in the Eclipse project ecosystem3 to support all aspects
of MDE.

The four levels of platform abstraction of Figure 1.1 have, in this document’s context, the fol-
lowing meaning:
M3: the highest level of abstraction, that is, the model that represents all the constraints, or

restrictions, that an model has to satisfy without encoding any specific knowledge in a
domain. The Eclipse Modelling Framework consortium4 has standardized the M3 level
via its ECore metametamodel language.

M2: the level of the so-called (in MDE speak) platform-independent but already domain-
specific representations, introducing modelling primitives with concrete names,5 con-
crete composition relationships, and concrete constraints, and with semantics that con-
form to (the much smaller) set of relationships and constraints in the M3-level model.

In the MDE paradigm, an M2 model can be represented in a so-called Domain Specific
Language, which represents the knowledge of the properties and relationships in the

2Hence, the BRICS project is working on an Eclipse-based toolchain, BRIDE, [7]. Deeper discussions about this
toolchain are beyond the scope of this document.

3http://www.eclipse.org
4www.eclipse.org/emf
5Those names are “natural” for the practitioners of the specific domain in which the M2 metamodel is intro-

duced.
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1.3. THE METAMODELLING PARADIGM FROM MODEL DRIVEN ENGINEERING
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Figure 1.1: The four levels of platform abstraction in OMG’s metamodelling standard for Model Driven
Engineering, illustrating the role of Domain Specific Languages (DSL).

model with a terminology and syntactical constructs that practitioners in the domain are
familiar with.

M1: the level of a so-called platform-specific model. That is, a concrete model of a concrete
robotic system, but without using a specific programming language.

M0: the level of an implementation of a concrete robotic system, using software frameworks
and libraries in particular programming languages.

Note that Figure 1.1 has “conforms to” relationships between the modelling levels, and an “in-
stance of” relationship between the concrete system model and its concrete implementation.
The fundamental differences between both relationships are explained well in [2].
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2 The BRICS Component Model as harmonizing
metamodelling paradigm

The major contribution of the BRICS project to its harmonization ambition is that it applied the
general metamodelling ideas of Fig. 1.1 to the domain of robotics, in the specific and innovative
way illustrated in Fig. 2.1:

• the M3 level is the Component-Port-Connector model (Fig. 2.2). This model is univer-
sally present (but most often only implicitly!) in all robotics software designs, not just
for modelling component-based systems but also in many functionality libraries (con-
trol systems, Bayesian networks, Bond Graphs, etc.). This metametamodel is not unique
to robotics (hence, it is really a metametamodel) but it is relevant in many engineering
systems contexts where sub-systems interact with each other through well-defined inter-
action points (“ports”).

• the M2 level brings in robotics-specific domain knowledge, in the sense of the BCM
(BRICS Component Model). This BCM is a formal representation of many of the im-
plicit ideas and concepts that are already in use in the popular robotics software frame-
works (hence, its harmonizing role!), so it is rather straightforward (but still most often
tedious. . . ) to provide formal models to these frameworks.

• The M1 level represents concrete models of concrete robotic systems. The important dif-
ference with M3 and M2 is that, at this M1 level, toolchain support is very important to
support developers in the complex tasks of concrete system design or component de-
velopment. A major design issue to improve “user friendliness’ is the ability of such a
toolchain to provide the above-mentioned models with terminology that is familiar to the
robotics developer community.

The BRICS project supports M1 via its BRIDE toolchain (Work Package 4), but this is not the
focus of this Deliverable. The following sections give more details about the core contributions
of this document, namely the level M3 and (especially) M2.

metametamodel

meta
model
(DSL)

meta
model
(DSL)

domain
model

domain
model

domain
model

conforms
to

conforms
to

M3

M2
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instance of

Robot system
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BRICS component model
(metamodel)

(Orocos, ROS, OpenRTM,...)

robot 
(software)
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Component-Port-Connection
(metametamodel)

Figure 2.1: The BRICS metamodel.
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2.1. M3: THE COMPONENT-PORT-CONNECTOR METAMETAMODEL

2.1 M3: The Component-Port-Connector metametamodel

This is the simplest, most generic model introduced in this document. (It is very similar to the
Lightweight CORBA Component Model, which we consider as a “best practice” in this context.)
The Component-Port-Connector metametamodel (CPC) has the following parts:

• Modelling primitives: The Components (C_A, C_B in Fig. 2.2) provide the containers
of functionality and behaviour, while the Ports (pa, pb) give localized and protected
access to the Components’ internals.

• Composition rules: The Connections (I_1) represent the interactions between the func-
tionalities and behaviours in two Components, as far as accessible through the Compo-
nents’ Ports.

• Constraints: not all compositions make sense, e.g., connecting three Ports to each other
directly. Here is a (not yet exhaustive) list of composition constraints:

• Connections form a graph, with Ports always inbetween Components and Connec-
tions.

• a Component contains zero or more Components.
• a Component can be contained in only one Component (different from itself).
• a Component contains zero or more Ports.
• a Port belongs to one and only one Component.
• a Connection is always between two Ports within the same composite Component.

At the time of writing, no final choice has already been made about (i) the constraint set that
should be standardized, or (ii) the formal language in which the constraints will be expressed.

C_A C_B

p
b

p
a

I_1

Figure 2.2: The Component-Port-Connector metametamodel.

2.2 From M3 to M2: the “5Cs”

In general, the M2 level adds specific semantics that are relevant in a particular domain; for
robotics, Figure 2.3 gives an overview of the “5Cs” underlying the separation of concerns [9] that
motivates the relevance of our BRICS Component Model (BCM) for the harmonization of all
robotics systems designs:

• four types of Components (more details follow later): Computation (encapsulating the
useful functionality within the system), Coordination (encapsulating the discrete be-
haviour of the system), Communication, and Configuration.

• Services on top of Connections and Ports:
• uni-directional Communication between two Ports,
• with various handshake protocols, buffering,. . . , and
• with an IDL (Interface Description Language) to model the service.

This model is a formal representation of the semantics and syntax of the data that is “sent”
over a Connection and through Ports; as in the Lightweight CCM, three types of Commu-
nication are identified as indispensable: method calls, data flow, and events.

This document only focuses on the semantics of the 5C model (and less on the models of Ser-
vices, Connections and Ports), because that is exactly the place where the BCM is scoring best
in its harmonization ambition:

• Computation: this is the core of a system’s functionality, and it implements (in hardware
and/or software) the domain knowledge that provides the real added value of the overall

6 BRICS Deliverable D8.2



2.3. THE BCM AND THE DEVELOPMENT PROCESS
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Figure 2.3: Overview of the “5C” metamodelling paradigm.

system. This typically requires “read” and “write” access to data from sources outside
of the component, as well as some form of synchronization between the computational
activities in multiple components.

• Communication: this brings data towards the computational components that require it,
with the right quality of service, i.e., time, bandwidth, latency, accuracy, priority, etc.

• Coordination: this functionality determines how all components in the system should
work together, that is, in each state of the coordinating finite state machine, one particular
behaviour is selected to be active in each of the components. In other words, Coordina-
tion provides the discrete behaviour of a component or a system.

• Configuration: this functionality allows users of the Computation and Communication
functionalities to influence the latters’ behaviour and performance, by giving concrete
values to the provided configuration parameters; e.g., tuning control or estimation gains,
determining Communication channels and their intercomponent interaction policies,
providing hardware and software resources and taking care of their appropriate alloca-
tion, etc.

• Composition: while the four “Cs” explained above are all motivated by the desire to decou-
ple the design concerns as much as possible (while avoiding to introduce too many sep-
arate concerns!), the design concern of Composition models the coupling that is always
required between components in a particular system. Roughly speaking, a good Compo-
sition design provides a motivated trade-off between (i) composability, and (ii) composi-
tionality. The former is the property of individual components of being optimally ready
to be reused under composition; the latter is the property of a system to have predictable
behaviour as soon as the behaviours of its constituent components are known.

This 5C model is an extension of the “4Cs” of the seminal work [24], by separating their “Config-
uration” idea in the semantically more fine-grained and specialised “Composition” and “Con-
figuration” aspects of the BCM. The following Chapter illustrates the hitherto probably still
rather theoretical descriptions of the “5Cs” with a concrete set of design guidelines, but first
we explain where in the overall development process developers should focus on each of the
different “Cs”.

2.3 The BCM and the Development Process

Neither the BRICS Component Model, nor the Development Process were anticipated in the
Description of Work of the BRICS project, but they were created gradually during the first years
of the project. That creation was inspired by the hard-felt need to provide more and more

BRICS Deliverable D8.2 7



2.3. THE BCM AND THE DEVELOPMENT PROCESS

structure to developers, supporting them during the long journey from initial ideas about a
system’s functionality, to the design of the components needed in the system, and eventually
to a working and deployed system. The Development Process was explained in a lot more detail
in a previous Deliverable,1, from which we here extract the most relevant phases:

• functional design: the functional architecture is created, using functional components
with interactions via ports and connectors, but without much detail about the software
design of those components and their interactions.

Only the structural part (that is, the CPC metametamodel) of the BCM is relevant in this
phase; but the BCM does not really bring such a lot of added value with respect to existing
traditions in this context.

• component design: in this phase, developers focus on the design and implementation of
each of the functional components identified and documented in the functional design
phase.

The BCM becomes highly relevant in this phase, for multiple reasons: (i) it makes devel-
opers aware of the different types of components,2 (ii) it provides “best practices” for each
of these types (see Chap. 3), and (iii) it harmonizes their design such that integration into
a toolchain becomes easier.

• system design: in this phase, Composition is the major focus of the system developer, and,
again, the BCM provides harmonization, structure, and best practice information.

• deployment: in most robotics projects, developers most often (implicitly) assume that
their development work is over after the system design phase, that is, as soon as all the
code compiles, links and can be executed. However, experience with modern robotic sys-
tems has already made clear that it is not a trivial job to start up large amounts of compo-
nents in a deterministic way, and without a lot of manual tuning and ad hoc scripting.

The BCM is very relevant in the deployment phase, mainly because it motivates devel-
opers to separate the Configuration and Coordination aspects of components from their
Computational aspects. For example, the BCM foresees a life cycle state machine for each
component, with initialization, configuration and operational behavioural states, which
allows developers to start components one by one, configure them one by one, and only
make them provide their functional behaviour when all the other components are also
ready to do so.

• runtime coordination: modern and future robotic systems will have to run “for ever”, at
least, compared to the rather short demonstration life times of current service robotics
“applications”. So, system and component developers will have to make their compo-
nents and systems a lot more ready to be re-configured, re-connected, re-placed,. . . , mul-
tiple times during the lifetime of the system, and preferably without having to shut down
the system. This feature is not at all present in the existing frameworks, but will be essen-
tial for providers of service robotics products and services to keep their maintenance and
updating costs under control: it does not make economical sense to have to send a service
engineer to every robot system deployed in the field, just to make a software update.

The impact of the BCM in these different phases in the Development Process is not limited to
the design of the components itself, but it also brings a lot of structure to the development of the
toolchain. More in particular, it has become very clear during the runtime of the BRICS project
that none of the existing toolchains (in robotics and elsewhere) provides a granularity of tools
that fits perfectly to the above-mentioned phases of the development process. This insight,
in combination with the documented structure of the BCM, has allowed the BRICS project to

1G. K. Kraetzschmar, A. Shakhimardanov, J. Paulus, N. Hochgeschwender, M. Reckhaus. Specifications of Ar-
chitectures, Modules, Modularity, and Interfaces for the BROCRE Software Platform and Robot Control Architecture
Workbench. BRICS Deliverable D2.2, August 2010.

2Computation, Coordination, Communication, Configuration.

8 BRICS Deliverable D8.2



2.3. THE BCM AND THE DEVELOPMENT PROCESS

have an harmonizing impact on that part of the community that is developing tools for the
major robotics frameworks. This has become very clear in community-wide workshops around
sofware engineering for robotics, such as, for example, on the European Robotics Forum. And
it has, obviously, provided very concrete inputs to the activities in Toolchain Work Package 4.
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3 Best practices — Toolchain guidelines

This Chapter provides a list of what the BRICS project partners have learned as “best practices”
in applying the “5Cs” to real robotics software designs. The list is not exhaustive, nor is it dis-
cussed in deep detail. The best practices are presented in the “5C” structure, complemented
with some more general “best practice” design guidelines. Since the BRICS Component Model
is the structured foundation behind the BRIDE toolchain developed in Work Package 4, these
guidelines can be integrated into that toolchain.1

The fact that such a condensed and structured description can be given for a lot of design and
development guidelines is another proof of the harmonization power of the BCM. More in par-
ticular, it refers to the “good news” of having a modelling paradigm available (Sec. 1.1), in the
sense that a shared set of semantic primitives is extremely efficient in conveying ideas and in-
sights between practitioners.

3.1 Coordination

For typical software developers in the robotics community, Coordination is often the least fa-
miliar design aspect. Because Coordination models the discrete behaviour of a system, it is
typically implemented as a Finite State Machine (FSM), and in general one should foresee
one at each level of composition. Each state of a Coordination FSM corresponds to a spe-
cific Configuration of the behaviour of, and Connection between, the other Components in
the system. Each Component should always have a life-cycle FSM, which allows the creation,
(re)configuration, and finalization of a component. Reusability of a Coordination component
is optimized when its content is restricted to pure event processing, that is, first order logic,
probabilistic state machine, etc. One important observation to understand why robotic sys-
tems design is typically more complex than in other engineering domains, is that such systems
typically have not only one nominal behaviour, but one needs to give them robust behaviour
against lots of “disturbances” from the real world, and from interactions with other compo-
nents. Such robust behaviour typically requires a lot more Coordination (in number of events
as well as in behavioural system states) than the nominal behaviour. This also means that a lot
of added value in a robot system is created by the quality of its Coordination component(s).

3.2 Composition

The robotics community is still not completely aware of the motivations to go from hierarchical
compositions to peer-to-peer compositions. A guideline in this context is that one must avoid
to let one “master” component kill multiple of its “slave” components, and instead let compo-
nents limit themselves to sending out “termination of service” events, which are to be taken as
serious advice (but nothing more!) in all other components that are configured to react to these
events.

Another guideline in Composition is to realise the difference between “functional” and
“component” architectures. The BCM is only dealing with the latter, and hierarchical
(sub)architectures are only introduced when adding more specific platforms constraints;
e.g., a specific kinematic model, controller, sensor, fieldbus, etc. At each level of composition,
the developer should be aware that it often makes sense to introduce explicit data structures
to support Coordination and Composition; in software frameworks that have no explicit 5C
model, these data structures are often “hidden” in computational components, which makes
those components (as well as the Coordination behaviour that they hide) more difficult to
reuse.

1This integration has currently not yet been achieved.
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3.3. COMPUTATION

Knowledge about components should only reside in the head of the Composition develop-
ers, and not in the Components themselves. But components should provide a model of their
own behaviour and Ports in their configuration interfaces. This “introspection” of a running
component allows other components to configure themselves at runtime to interact with that
component, based on that semantic model. Indeed, developers should not forget that compo-
sition is not just a compile time responsibility, but that it also appears at deployment time and
at runtime.

3.3 Computation

Various types of Computational models exist: function blocks (a.k.a. functional programming,
or data flow programming); Bond Graphs (for the simulation and control of physical system
that exchange energy); message passing over graphical models (for perception); and many oth-
ers.

Current robotics developers seldom provide pure computational components, mainly they
often mix them with application-specific Coordination, Configuration, Communication, and
Composition. Because of its most limited support for a component model, ROS is a major
“worst practice” in this context; or rather, many developers use the ROS component framework
without much attention to the “5C” separation of concerns.

3.4 Configuration

One should provide one Configuration component to each Component, since configuration
should take place synchronously with the configured Component, when the latter is in its Con-
figuration state. Configuration should also be atomic, as observed by all other components.
It is the Coordinator’s responsibility to make sure that it triggers events (i) to bring compo-
nents in their Configuration state, and (ii) to activate the Configuration components “to do the
right thing” at the right moment. This guideline separates the actual configuration from the
Coordinator component, since it does not have to know anymore how to configure the compo-
nents. In other words, a Configuration component “shields” a Computation component from
the Coordinator, in that the latter does not have to be aware of the computational state every
component in the system under coordination is in at each moment in time.

3.5 Communication

Three Communication types (as in the Lightweight CORBA Component Model standard) are
required:

• data: between components in a Computational composite.
• event: for Coordination.
• service requests: for Configuration and for data exchange between Components within

the same composite.
Most component based software framework implicitly create a lock-in into the Communica-
tion policy supported by the framework, and this limits the reuse of its components in systems
with other policies.

The biggest need, in each application domain, and in the context of Communication, is that
of standardization of the data structures that components communicate between each other.
The robotics domain scores extremely poorly in this respect; e.g., even the most fundamental
geometric primitive of a frame has not yet been standardized. . .

The robotics domain is also achieving poorly when it comes to adopting Communication “mid-
dleware” frameworks developed in other domains, as illustrated by the dozens of “yet another
commmunication middleware” projects that have been created by robotics developers in the
last decade.
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3.6. MISCELLANEOUS

3.6 Miscellaneous

One component must not necessarily be one process. In other words, there is no compelling
need to deploy one unit of computational component into one unit of computational resources.

Most developers in robotics make the error to name their components, variables, events, etc.
after the purpose they serve in their current application, instead of after what they are or do. For
example, try to avoid the name of “error state” in a Coordination FSM, since what is an error
in the sub-system at the time of development of the FSM might be an expected state in a later
larger-scale composition. So, the most appropriate name for a state is one that represents the
behaviour that the system is providing when in that Coordination state.

Assigning a separate component to each shared resource (hardware, data, environment,. . . ) is
advantageous, since it allows to let that component, and only that component, coordinate what
happens to the shared resource.
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4 Conclusions

The ambition of the BRICS Component Model is to introduce models as first-class citizens in
the robotics software development process. The major reasons are (i) providing explicit and
formal models in a domain helps developers to structure their design efforts and outcomes,
and (ii) code in concrete programming languages can then be generated from the models via a
(semi)automatic toolchain (“model-to-text” transformations, in MDE speak), instead of hand-
crafted. So, while code generation from models is essential in the ambition of the BCM, its
current state of practice is still rather elementary in this context. However, the concepts of
the BCM have already been tried on more than one hundred developers (PhD students, and
academic and industrial robot software engineers) on various occasions (research camps orga-
nized by the BRICS project; targeted dissemination workshops with selected developers; public
workshops on the European Robotics Forum), and the outcome is always positive: these devel-
opers quickly get concrete “best practices” from the BCM paradigm, even without full toolchain
support or standardization of the “5C” models. This fast “transfer” of concepts and insights is
a major results of the harmonization power of the BCM.

Currently, the BCM concepts can be applied successfully in the design and development of
new components in existing “non-BCM-based” software frameworks such as ROS or Orocos,
by developers that are sufficiently disciplined to map the BCM and its best practices onto the
available component primitives in the frameworks. However, the other way around will most
often fail; that is, it is typically impossible to make a 5C model out of an existing ROS or Oro-
cos system, because those frameworks are not yet supporting their users to use the 5Cs in a
systematic way. A major problem in ROS and Orocos is that they have no explicit primitive
for Composition. And here the second harmonization power of the BCM is beginning to have
impact, since developers in ROS and, especially, Orocos and OpenRTM have started to adopt
many of the BCM ideas, suggestions and terminology.

Finally, it often turns out that, when a system is designed according to the BCM, most of the
added value in each system is concentrated in the Coordination and Configuration compo-
nents, while the Computations and Communications can most often be reused from existing
software projects. (Often with some necessary but rather straitghtforward refactoring to cleanly
separate the 5C concerns.)
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