
Robust high precision 6D pose determination in complex environments

for robotic manipulation

Thilo Grundmann, Robert Eidenberger, Martin Schneider, Michael Fiegert and Georg v. Wichert

Abstract— For many robotic applications including mobile
manipulation robust object classification and 6D object pose de-
termination are of substantial importance. This paper presents
an object recognition methodology which is capable of complex
multi-object scenes. It handles partial occlusions and deals with
large sets of different and alike objects.

The object recognition process uses local interest points from
the SIFT algorithm as features for object classification. From
stereo images spatial information is gained and 6d poses are
calculated. All reference data is extracted in an off-line model
generation process from large training data sets of a total of
100 different household items. In the recognition phase these
objects are robustly identified in sensor measurements.

The proposed work is integrated into an autonomous service
robot. In various experiments the recognition quality is evalu-
ated and the position accuracy is determined by comparison to
ground truth data.

I. INTRODUCTION

Object recognition comprises the tasks of object class

identification and pose determination. Although this plays

a major role in several scientific domains, many current

approaches to object recognition are limited in their appli-

cability due to inaccuracies in the pose determination, the

number of detectable objects or the complexity of scenes.

Object occlusions and the appearance of similar objects in the

same image often constitute problems to robust detection. In

this work we present a detection methodology which allows

accurate 6d object pose determination and object class detec-

tion. It uses Lowe’s SIFT algorithm [1] for determining local,

scale-invariant features in images. The application of the

SIFT algorithm on stereo images from a camera pair enables

the calculation of precise object poses. This appearance- and

model-based approach consists of two separate stages, Model

generation and Object recognition and pose determination.

Model generation is an off-line process, where the object

database is established by determining essential information

from training data. We consider a set of 100 household

items of different or alike appearance. The challenges lie in

the reasonable acquisition and the efficient processing and

storing of large data sets.

Object recognition and pose determination aims on sat-

isfactory object classification results, low misclassification

rates and fast processing. The precise detection of the ob-

ject pose allows the accurate positional representation of

objects in a common reference frame which is important to

many tasks. It is important to notice, that for collision free
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Fig. 1. A service robot commonly operates in a complex environment.

operation in realistic household scenarios, low precision of

the pose of surrounding objects can jeopardize manipulation

attempts due to reduced clearance. For this reason we rely

on stereo vision.

The proposed method is embedded in a mobile service

robotics framework. Figure 1 shows the prototype. The

robust and accurate object recognition system is basis to con-

tinuing works such as object manipulation [2] [3], perception

planning [4] and physical object dependency analysis [5],

which point out its importance.

Section II outlines current state of the art approaches to

model-based object recognition and model generation.

In Section III the data acquisition procedure and the

methodology for model generation is described. Section IV

depicts the principles for object class identification and 6D

pose determination.

This paper closes with experiments in Section V which

demonstrate the proposed theoretical concepts on real data.

II. RELATED WORK

The problem of visual object pose estimation has been

studied in the context of different fields of application,

robotics or augmented reality to name two.

All approaches can be characterized by a number of

parameters like the number of dimensions of the measured

pose (mostly one, three or six), the restrictions on the objects



to be localized (e.g. in shape, color or texture), the ability

to estimate the pose of multiple instances of the same class

in one image and the capacity for various different classes

in the model database of the proposed system. Also the

proposed sensor system (mono/stereo camera, resolution),

process runtime and the achieved precision in the pose are

characteristic.

One of the earlier papers on object pose estimation [6]

dealt already with the high number of one hundred different

classes. Nevertheless the measured pose in this case is only

one-dimensional, and the scene is assumed to have a black

background and no occlusion or objects of unknown classes

in it.

Later on [7] and [8] extended the estimated pose to 3DOF

assuming the objects to be located upright on a table, using

one of five objects in their experiments.

Others [9] restricted their objects to forms that can be

modeled by wire frames and achieved good results in full 6d

pose estimation examining two different objects. The quality

of the pose is indirectly evaluated by successful grasping.

True 6d pose measurement using local SIFT features was

demonstrated by [1], describing a method that is able to

localize flat objects within a range of 20 degrees, demon-

strated on two scenes, consisting of three different objects

each, without evaluation of the pose accuracy.

Azad et. al. presented a stereo camera based method

[10] for full 6 DOF pose retrieval of textured object using

classic SIFT interest points. The method requires the objects

to posses flat surfaces for the stereo recognition, and the

accuracy of the pose estimation is not measured directly.

Recently Collet et al. presented a mono camera object

localization system [11], based on SIFT features using ransac

and mean shift clustering. They also describe an almost fully

automatic process for the model generation and give some

experiments with four object classes where measured poses

are evaluated against ground truth. The error is described by

histograms over the translational and rotational error.

Another model generation system is described in [12]

which is able to build a model online from a video stream.

The model is also built fully automatically, additionally

the user is assisted in the image collection by guiding the

direction to which the object should be moved and by the

visual feedback of the emerging model.

A comprehensive taxonomic and quantitative comparison

of multi-view stereo model building methods for dense

models can be found in [13], sparse models are out of scope

for this paper though.

Our approach is comparable to the method of [11], using

a similar 3d model which is not restricted in the shape based

on SIFT features. Through the use of stereo vision and thus

conceptual different methods for the pose determination a

higher accuracy in pose measurement is achieved.

Note, that an exact direct comparison is difficult without

perfect re-implementation, so we generated translational and

rotational histograms similar to the ones in [11] which

demonstrate a better performance of our approach. When

it comes to comparison, the main drawback to the research

done on six dimensional object localization is the absence

of benchmark datasets.

To overcome this the KIT published1 all image data

for the 100 object classes which we used to build our

models. In combination with our test scenes including full

camera calibration, ground truth data and results this forms a

benchmark dataset for 6d textured object localization using

cameras.

III. MODEL GENERATION

Model generation aims on the acquisition of training data

and its processing to generate object class models. It is

essential to filter significant data and efficiently store it to

enable reasonable processing times.

A stereo camera system and a laser scanner (The KIT

object modeling center IOMOS [14]) are used to acquire 360
stereo images for each object and the 3d surface. Rotating

the object on the turntable and moving the sensors results in

sensor data at 360◦ latitudinal and 90◦ longitudinal angles

in 10◦ steps.

The build process starts with computing the SIFT interest

points (IPs) for each image and calculates 3d points by

triangulation of IPs in each stereo image. Then matches

over all images are determined and equivalence classes from

these matching IPs found. At last each equivalence class is

represented by one descriptor and one 3d location. All these

equivalence class representatives together build up the model.

Now, each step of the build process is described in detail.

1) SIFT interest points calculation

The base for the process are the SIFT interest points

for each image. Each SIFT interest point si =
(u, v, s, o, dl) consists of the 2d location (u, v) in the

image, its scale s and its orientation o. dl denotes

the l-dimensional descriptor vector. For each training

image the set of interest points in the left camera image

Sl with Sl = {s1, ...sn} is determined. The interest

point set Sr for the right camera image is acquired

respectively.

2) Triangulation

3d points are computed for corresponding IP’s in

the left and right images. Corresponding IP’s are

determined by using the epipolar constraint and SIFT

descriptor matching. For every IP in a left image Vl we

compute the epipolar line Le in the right image Vr and

determine the subset Se
r ⊂ {si ∈ Sr|dist(si, Le) <

εE} with εE as the maximum epipolar distance. Then,

SIFT descriptor matching is performed. It is impor-

tant to do the epipolar examination before the SIFT

matching step. This way the set of possible matches is

constrained to a region in the image. IPs with similar

descriptors from other parts are not considered and

cannot distort the result. For each matched IP pair

(si
l , s

j
r) the corresponding 3d location and orientation

are computed using triangulation [15] and transformed

1http://i61p109.ira.uka.de/ObjectModelsWebUI



into the objects coordinate system to get the spatial

feature representation:

s# = (x, y, z, x′, y′, z′, s, o, dl). (1)

The first three elements x,y and z denote the transla-

tional coordinates, x′,y′ and z′ represent the direction

from where the interest point is visible. Scale s, orien-

tation o and descriptor dl are equal to the parameters

of the 2d interest point.

3) Equivalence Relation

The next step aims at partitioning this set of 3d points

into subsets originating from the same physical point.

This equivalence relation is seeded from IPs with

fitting appearance and location and is completed by

the transitive closure.

First candidates are found by appearance. The enor-

mous amount of data with on average 850 3d locations

for each training view, 280000 for each object, can

be handled efficiently by means of a kd-tree. Using

Euclidean distance in the SIFT descriptor space the

nearest nN - neighbors in the kd-tree are searched for

each si
#.

nN depends on the sampling rate of the training data

as SIFT descriptors are only invariant within a limited

angular range and each face of the object is only seen

from a certain range of camera positions. It was set to

150 in our case.

Then candidates are checked for their spacial fit by

projecting them to the view of their matching partner

both ways and calculating the Euclidean distance in

the image. If this distance, which is the expected

reprojection error, exceeds a threshold (5 pixel in our

system) the candidate is rejected. In rare cases it can

happen that two IP’s from the same view are in one

equivalence class. These IP’s are removed.

A standard connected component algorithm is used to

compute the transitive closure.

4) Subdivision and Representatives

We now seek a simple representation for each equiv-

alence class above a minimal size vmin. Very small

classes (eg. vmin=4) are discarded to supress IPs of

low value for the recognition process and noise.

When evaluating classes one finds the locations clus-

tering well, but descriptors to spread considerably.

This is not surprising since we do see most points

from a wide angle range were the SIFT descriptor

cannot be assumed to be invariant. Instead of more

complex density models we favor a very simple rep-

resentative, which is a simple mean for location and

normalized mean for descriptor. To make this simple

model suitable we sacrifice the simple relation, where

one class corresponds to one physical point, and split

classes with k-means until they can be represented as

spheres. This considerably simplifies and speeds up the

recognition process.

The full model for one object needs about 5% of storage of

the initial SIFT features. This enables fast recognition since

Fig. 2. Sensor head: Stereo cameras and 3d-TOF camera mounted on a
pan/tilt unit

big databases can be held in RAM completely.

It had been considered to use sparse bundle adjustment

for refining the model data, the camera positions and cali-

bration. But since the provided input data had been compiled

by a rather solid contraption where camera positions and

calibration are accurately known this turned out not to

be necessary. Also, some of the household items in the

database suffer from large untextured areas that lead to views

without sufficient numbers of interest points. Under such

circumstances a pure sparse bundle adjustment without any

initial camera pose information is expected to fail due to lack

of sufficient data.

IV. OBJECT RECOGNITION AND POSE

DETERMINATION

Many applications require a high pose determination ac-

curacy. To account for this we use a stereo camera based

approach, as preceding experiments using a mono camera

and the posit algorithm [16] lead to unsatisfying results.

Comparable results were found in [17] which showed that

stereo approaches outperform mono camera approaches by

the factor of ≈ 2. Our stereo setup on the robot (Fig.2)

Fig. 3. Recognition principle: finding matches between interest points
s# ∈ M from given models and interest points detected in one image
s ∈ Sl (step 2)

consists of two Avt Pike F-145C firewire cameras with a

resolution of 1388 x 1038 pixels each, equipped with 8.5mm

objectives and mounted with a disparity of 0.12m.



Precise intrinsic and stereo calibration of the cameras is

essential to our algorithms so they were carried out with the

Camera Calibration Toolbox for MATLAB, using about 60

stereo image pairs of a custom made highly planar checkers

calibration pattern.

The recognition and localization process consists of the

following steps:

1) Calculate SIFT interest points

For each of the stereo images, Vl and Vr a correspond-

ing set of interest points is calculated Sl = {s1, ..., sn}
and Sr = {s1, ..., sm}

2) Find correspondence to object models (Fig.3)

For all elements si ∈ Sl try to find up to pmm

multiple matches ck = {i, j} with a 3d feature from

the model database s
j
# ∈ M . The criterion for a match

is that the Euclidean distance in descriptor space is

below an absolute threshold ptm = 0.3. The multiple

match is needed, because with an increasing number

of object models in the database, the uniqueness of a

lot of features is lost. This happens in a non ignorable

way for household items that often follow a corporate

design and share large areas of texture.

To speed up the search for matches, the descriptors

from the database M are structured in a kd-tree using

the ANN library. To increase the performance, the

nearest neighbor search is approximated. The quality

of the approximation can be parameterized, we used

the value papp = 5.

3) Construct stereo interest points

For all matchings ck = {i, j}, we try to find multi

stereo matches on the right interest point set Sr. The

epipolar constraint is used in the same manner as

described in Section III.2, but after the epipolar spatial

restriction, a relative multi match is used. This has

to be done to account for the classic situation where

multiple instances of the same object class are placed

side by side on a board, leading to multiple similar fea-

tures on the epipolar line Le. After this procedure we

obtain a set of l 3d SIFT points S# =
{

s1
#, ..., sl

#

}

by

triangulation. Each of these 3d SIFT points belongs to

an object class, indicated by its corresponding database

feature s
j
#. In a system with t known classes this gives

a partition of S# =
{

S1
#, ..., St

#

}

, whereas some of

these class depending partitions might be empty. From

here on, all calculation is done separately for each

object class.

4) Cluster within class t

To account for scenes with large numbers of identical

objects and to deal with the high number of erroneous

3d SIFT features, we construct initial pose estimates

P =
{

p1, ..., px
}

from St
#. This is done by choosing

randomly non collinear triplets of 3d interest points

from St
# and check whether their mutual Euclidean

distances match those in the model database.

Within the 6d space of the initial pose estimates P , qt-

clustering [18] is performed to find consistent 6d pose

estimates. The clusters consist of 6d poses px which

all correspond to a triplet of 3d interest point St
#. That

way each cluster describes a set of 3d interest points

Sc
# ⊂ St

#.

5) Pose determination

All 3d interest points from each cluster Sc
# are used

to determine the transformation of the database 3d IPs

into the measured cloud by a least squares pose fit (Fig.

3). In the resulting list of object classes and poses a

similarity search is performed to eliminate duplicate

poses, which emerge from imperfect clustering.

One important advantage of this 3d SIFT stereo approach

is, that in contrast to other approaches it is able to handle

objects of any shape, as long as the object fulfills the require-

ments on its texture that are inherent to the SIFT algorithm.

It is not generally bound to the usage of SIFT features, so

in the future improved interest point methods could replace

the SIFT interest points. Note, that the parameters in the

algorithm strongly influence the performance and thus have

to be optimized to fit an application scenario.

V. EXPERIMENTS

The experiments we conducted should evaluate the per-

formance of our system in terms of detection rate and pose

accuracy. Since it is very difficult to acquire pose ground

truth data in complex scenarios we split the evaluation into

two parts. In the first part, we set up scenes where the

ground truth pose can be determined with a calibration

pattern, leading to single object scenes of low complexity.

The detection rate in these simple settings was 100%.

In order to evaluate our method in more realistic scenarios,

we set up a second test, based on complex scenes consisting

of up to 30 objects placed in arbitrary positions in a real

environment supplemented with unknown objects. This way

the method’s robustness against occlusion, object ambiguities

and environmental influences can be evaluated. In such

scenarios, ground truth poses are not available, but it is

possible to evaluate the correctness of the detection by visual

inspection of the bounding volumes that are projected into

the images.

The time required for a one shot recognition of a complete

scene can be divided up into two parts: The SIFT calculation

takes about 0.6 seconds per image on a 2GHz intel multicore

and the processing of the poses takes 0.3 seconds without us-

ing the multi cores. Note that there are some parameters like

the kd-tree approximation quality which strongly influence

the runtime of the processing part.

A. Evaluation of pose accuracy

To evaluate the system’s accuracy in the pose estimation,

we compared the recognition results of 260 scenes with

ground truth. To acquire 6d ground truth data we applied

paper sheets with the projected corresponding model onto

the bottom of the objects (Fig.4). Since the origin of the

objects is located in the bottom plane, this method enables

us to place the object onto a calibration pattern with 3DOF

and with sub-millimeter accuracy.



Fig. 4. 1st row: objects, placed precisely onto the calibration pattern. 2nd row: Ground truth values projected into image (dot cloud(red), bounding
volume(yellow)).

Fig. 5. 1st: Histogram of object’s distance to camera over the test set. 2nd:
Translational error over distance (dots) and the mean translational error over
distance (bars).

Fig. 6. Histograms of translational(in cm) and rotational error(in ◦).

In the test we placed one object per scene onto a cal-

ibration pattern (Fig.4) and measured its pose. Using the

camera’s pose with reference to the calibration pattern which

is determined using the matlab calibration toolbox, we trans-

formed the ground truth pose into the camera coordinate

frame where we compared it against the result of the recog-

nition algorithm. We selected seven different objects with

varying shapes for this experiment.

The distance of the objects origin and the camera ranged

from 0.42m to 1.25m (Fig. 5/1). This area was chosen from

our experiences with the working area of the mobile service

robot.

Due to the relatively simple nature of the scenes all objects

Fig. 7. The xyz-deviations of all test scenes, depicted in the camera frame,
with its covariance ellipsoid (95% quantile).

were detected correctly, so we collected 260 pose mea-

surement error vectors. As expected from the measurement

principle, the results show increasing translational errors

with growing distance (Fig.5/2). For the evaluation of the

rotational errors, we calculated the minimal rotation angle

from the resulting 6d pose to the ground truth 6d pose. The

overall distribution of translational and rotational errors are

shown in Fig. 6, the corresponding standard deviation of the

translational error is shown in Table I.

To get a more expressive model of this measurement

process, we transformed the error into the camera frame, and

calculated the covariance for the translational components

of the measurement errors (Fig.7). As expected from the

measurement principle, the standard deviation of the zc-

component in the camera frame is considerably higher as

the standard deviations in the other directions xc and yc

(Tab.I). Using this model it is possible to model detection

inaccuracies fairly precisely. Note, that the inaccuracies also

contain potential errors in the 3d models as well as the bias

from placing the object imprecisely onto calibration pattern.



(a) Labeled office scene (b) Detection results (c) Legend (near objects)

(d) Labeled kitchen scene (e) Detection results (f) Legend (far objects)

Fig. 8. One shot detection results for two complex scenes in a kitchen and an office environment. The results are evaluated with respect to the a priori
categorized objects.

TABLE I

TRANSLATIONAL ERROR IN THE CAMERA FRAME.

stddev [mm]

‖(xcyczc)‖2 2.2436

xc 1.3763

yc 1.3617

zc 3.4235

B. Object recognition in complex environments

In this experiment complex and cluttered scenes are con-

sidered. A series of 60 images of different scenarios at

different locations are investigated. All contain chaotic object

arrangements including trained and unknown, random ob-

jects. For the evaluation, all objects are categorized according

to their distance from the camera and to their occlusions.

Thus, we differentiate between close and far items and cluster

the objects into fully visible, partly occluded and heavily

occluded ones.

Figures 8(a) and 8(d) show two scenes with the initially

labeled objects. Squares mark fully visible objects, diamonds

indicate partly occluded items and circles denote heavily oc-

cluded ones. Close objects are shown solid, far away objects

as halves. The yellow area on the left of these images is not

considered for the stereo matching, so objects in this part

of the image are ignored for the recognition. The respective

detection and classification results for the two scenes are

illustrated in Fig.s 8(b) and 8(e). The bounding volumes

with respect to the 6d poses of the recognized objects are

projected into the image. In the first sample, all objects are

detected. However, a small number of false positives can be

recognized for the salt boxes, the rye bread and the oil can.

False positives are objects that are detected although they

are not physically there. They result from ambiguous objects

with similar textures on several sides or similar objects in

the database, such as the three almost identical salts. In

Fig. 8(e) not all objects are recognized because of heavier

occlusions. Though, fully visible ones are clearly identified.

The successful detection also depends on the lighting as

the trained images were acquired under one specific lighting

condition. Variations influence the recognition process.

By visual inspection the detection results are compared

to the pre-selection. The true positive and false positive

classifications rates are manually determined by checking

the class and pose recognition results. Figure 9 shows the

detection results of each of the 60 scenarios. The total

number of objects in the scenes ranges from 7 to 30. The

number of recognized objects and the false positives for each

scene are also plotted. While the number of false positives

is generally low, a few scenes with very dense object

arrangements showed more than 10 false object hypotheses.

In Fig. 10 the detection rates are plotted. The overall rates

show the number of detected objects over the total objects

in the scene. The other curves depict the rate of detecting

fully visible objects and partly occluded ones. The total

recognition results over all scenes are listed in Table II. Rates

for each category a separately and jointly determined. As

expected, closer objects perform better in the recognition. In

matters of occlusions, a decay can be recognized from fully

visible to heavily occluded items. The overall detection rate

of 72 per cent is lower than the peak detection rate of 86 per

cent for close and fully visible objects. The random object

alignments with unfavorable object poses, lighting influences

and object occlusions are reasons for recognition failures.

However, considering the large database and the complexity
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Fig. 9. Object detection results and false positives in comparison to the
total number of objects in scene for 60 different scenarios with a total of
826 objects.
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Fig. 10. Overall detection rate and detection rates of fully visible and
partially occluded objects.

of the scenes the one shot recognition results are promising.

VI. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

We presented a system that is able to detect and localize

objects from up to 100 different classes. The 6d detection

accuracy of the object pose and the detection rate are eval-

uated in extensive experiments, which demonstrated a true

positive detection rate of 72% in highly complex cluttered

multi object scenes with partly occlusions. The resulting pose

errors had a standard deviation of 3.4mm in the direction of

the camera (zc) and 1.4mm in xc and yc. This result forms

TABLE II

OBJECT CLASS DETECTION RESULTS BROKEN DOWN TO THE DETECTION

CATEGORIES.

detection rates
fully partly heavily

distance visible occluded occluded total

near 0.863 0.763 0.179 0.796

far 0.813 0.593 0.167 0.617

total 0.846 0.684 0.170 0.722

a more new and finer probabilistic model for the recognition

process.

A satisfactory trade-off is found between fast processing

and good recognition rates and detection errors and fail-

ure recognitions. The system is suitable to applications in

cluttered environments with random object alignments and

unknown objects.

B. Future Works

We plan to include sparse bundle adjustment into the

model generation process to increase the precision in the 3d

models which is expected to increase the pose precision on

the one hand, but also to loosen the precision requirements

on the camera pose. Nevertheless we assume, that modeling

approaches without any camera pose informations will fail

on objects with certain texture characteristics such as highly

symmetrical patterns or large untextured areas.
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